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- ABSTRACT -

The relativistic expression for the dielectric tensor obtained
by Trubnikov is simplified in the very weakly relativistic limit at and
near electron cyclotron harmonics. Wave numberé parallel to magnetic
field are included, leading to relativistic damping when this wave
number is zero and to cyclotron damping when it is sufficiently large.
The transition is shown. Collisional damping is neglected. The dielectric
elements giﬁen here are also applicable to cases of complex w and real k.
This situation arises in Alouette reception since we are concerned with
an initial time value problem. For this application, we provide the
analytic continuation of & complicated function and investigate the

tracks where it is real for complex w.
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PREFACE

This report contains the following, entitled:
General Introduction:
Part 1: The Dielectric Tensor Near Cyclotron Harmonics. (/
Part 2: The Dispersion of Waves in Cyclotron Harmonic Resonance v
Regions with Application to the Alouette.
Part 3: Time Decay for Cyclotron Harmonics. t/
Part 4: Alouette Cyclotron Harmonics: Observations and Results /

Appendix: Critiqﬁe of Theoretical Work on Topside Sounder Resonances




GENERAL INTRODUCTION

I. CYCLOTRON HARMONICS AND THE IONOSPHERE

il

This report in 'four parts summarizes the productive
———_"_—’—“

theoretical work on the problem of the cyclotron harmonic ringing or

resonance in the upper ionosphere as observed by the Alouette swept-
e — ——— i

frequency topside sounder satellite and also by the fixed frequency

S-48 satellite.

Th; Alouette sounder operates by generating a short (~100 4 sec)
pulse every 15 milliseconds at some frequency between .5 and 12 Mc,
100 u sec. after which a receiver is turned on for 14.6 milliseconds to
listen for echoes from the upper ionosphere below the sounder. The
cyciotron harmonic ringing is observed when the sounder receiver
frequency is within say 60 kc of a harmonic of the electron cyclotron
frequency{evaluated at the satellite) which is typically .5 to 1 Mc,
When a resonance occurs in addition to the usual noise observed
immediately after the receiver is turned on, there is a strong signal
(at times, for the second harmonic, enough to bidck the receiver) which
dies away with persistance times of from .5 to 2 or more milliseconds.
Collisional effects are easily shown to be negligible for these times
of interest. For more details see Lockwood (1963)(196L), Warren (1963)
Johnston and Nuttall (1964) and Part I4.

The object of this work was to explain and predict the features
of this interaction with a view to assessing the suitability of the

phenomenon as a magnetic field diagnostic,




Preliminary Considerations

22

Because the cyclotron harmonic values fitted the satellite
value of magnetic field within .5%, the effect was not due to plasma
very far from the satellite (a minimum distance of 30 km) where the
magnetic field would change by more than .5%. ‘On the other hand this
same agreement indicated that if plasma waves were involved the Doppler
shift was small so the wave phase velocity had to be at least 200 times
the relevant component of the satellite velocity and hence much greater
than the électron thermal velocity. The wavelength thus had to be much
larger than the electron gyro-radius or Debye length.

An initial attempt was made to see if the self-consistent field
of the electrons could be neglected as in Lockwood's (1963) discussion.
The conclusion was reached that the self-consistent field was vital and
that self-consistent analysis had to be used. With the present state
of theory the only tractable dynamic problem using the collisionless
plasma (Vlasov) equation for the velocity distribution function is the
perturbation of a uniform medium.

The Alouette problem thus reduced itself to the following:
explain the Alouette cyclotron harmonic results using the Vlasov equation
in its perturbation form for a unif'orm plasma.

For those unfamiliar with the Vlasov equatiorn analysis in its
perturbatior form we give an outline of the basic theory next in this
introduction.

Report Layout

The four parts to this report give the analysis and the

results.




Part 1:

Part 2:

From the basic theory the first requirement is the so-called
Vlasov plasma dielectric itensor. This is the subject of Part 1.
It proves necessary to obtain the tensor in the relativistic
form; the instructive comparison with the nonrelativistic form
is also discussed.

Having obtained the dielectric tensor the next order of business
is the dispersion equation whose roots are vital to the problem:

this is the topic of Part 2,

Part 3: We are then in a position to calculate interesting features of

Part 4:

the resonant or singular time behaviour done in Part 3, using

a fairly new mathematical technique based on "pinches" by

poles of integration contours in complex planes, essentially the
same as that used by Nuttall (1965).

The foregoing parts are highly mathematical and so in Part 4
the essential features and results are indicated with a minimum
of mathematics as applied to the Alouette results., Discussions
and suggestions for future work and verification of the present
results are also presented. There is also a critique of other

theoretical work on the problem.

The reading order suggested is the Introduction and perhaps the

Basic Theory and Part L4 at first and then,in depth, the Basic Theory

section and Parts 1, 2 and 3. While the results and discussion of Part 4

can be understood without the second reading, following the derivation of

the results requires the careful second reading.




II. BASIC THEORY

The theoretical problem equivalent to the Alouette situation is
the following: "A certain electromagnetic source in a warn uniform plasma
runs for some time and then is turned off. What is the electric field
afterward as a function of time and space? More particularly, how does
the largest-lived part of field vary in the vicinity of the source as
seen by a slowly moving (at the satellite velocity) receiver?"

In view of the fact that the phenomena of interest are observed
jnvolve local values of electron cyclotron frequency the initial
assumptions are those of a uniform infinite plasma and of small
perturbations.(The last cannot be correct very near the antenna. The
Alouette near field is of order 36/r volts/meter (r in meters)).

The standard technique for this kind of problem of a uniform
dispersive medium with some arbitrary source is that of a Green's
function or its transformed equivalent obtained from the time-Laplace and
space-Fournier transformed Maxwell equations and those for the medium.

The transforms will be distinguished where confusion might

arise by their argument, e.g. for electric field E(z,t) its frequency

transform is

o

gg;,w) = [ at et E@‘,t)

0

and the combined frequency and wave number or plane wave transform is

B(g0) = [ a’;;f at ei(“’t“-k‘i)g(g,t)




The time and space integrals are thus defined for Imw > 0 and
Im k.r < 0 and may require analytic continuation away from the region

of validity for the integral definition.

The two relevant Maxwell equations in rationalized M.K.S. units

3 1-!(.1;,1:)
(7Y
vV x E(;",t) == Ho —31 — (1a)
AR(L .t
v x H(z,t) = eo —Eé-%-—l + I(x,t) + I (z,t) (1b)

where J-Ie is an external current and "l is the plasma convection current.

The PFourier-Laplace transform version of these is

+ 3k x B(k,0) = + JouoH(k,w) + poH(k,t = 0) (2a)

+ j’l&xg(']_:‘,w) - jweog(}f',w) + J(k,w) +v§e(k,w)

- gog(zc‘,. t = 0) (2b)

The plasma current ’g‘ will be given in terms of g(l_g,w) so eliminating

H(k,w) gives

-kx'&xE(.,w) --—z E(",w) -

JJQ"w)) (3)

= o M (k, t=0) - 47 E(5, t = 0) + wuod (k,u)




From some plasma equation one can write ,‘1\(}5\"") in terms of ’Ei('lg,w) end some
initial conditions and we will then be able to get a solution for g(g,w).
The general nonrelativistic Vlasov plasma solution has been given by
Sitenko and Steranov (1956) and by Bernstein (1958) and the relativistic

problem has been discussea by Trubnikov(1958). The relativistic result is

cu!
§* 8

¢
£1(k,0,3) =;1;f dxb'G[:ﬁ (k,t =0, u') + %2(&,0) . u;caf u.'_l] (%)

where fy (_lg,w ,3) is the distribution function plane wave transform and
f1('1.<, t =0, 3) is the spatial Fournier transform at time t = O
fo(y) is the undisturbed distribution as a function of
4 which is the spatial part of the four-velocity v(1 - vz/cz)-% while

1 1
us component is ¢(1-v%/c2)"2 = c(1 + u?/c?)’?

Wy eB/m where m is the rest mass

o = om[ [ an (s (g

u, (':’L‘XCOS¢ +‘jay31n¢)+uzgz

)
n

e
H

For the nonrelativistic case R°P the four velocity, becomes v
the usual velocity much less than c¢ and us becomes 1.

The plasma current transform is given by

,‘I k,fl)) = -8 [ a’ u‘ﬁ-; fi(}.{‘,w’}i\)
J
-~
= - = (k =
LoEw) - 35 Gt = 0) (5)

where Js(’lg, t = 0) has the special initial terms fy(k, t = 0, w') and




Jp(,lg,w) the cha.ra.cterigtic plasma term with gﬁ(g,w)af/ag. It proves

convenient to group ‘g.p (,15, w) with the displacement current term to give

(k,w) w? g BT
'--2- E(k, w) - 3= ] 01-‘:%4-'358—0 d*u [dﬁb'Gg -a—-— E(k,w)

(6)

J 2 of
£ k,w) m E + m:so a3u {ﬁ% -‘::[ dp'G 3—}.1:'- (7

The dependence on k,w comes from G as well as the explicit w term.

The wave equation thus becomes

- kx k x B(sw) -7 g(c,0)  B(k,0) = R(k,0) L E(k0)/c?  (8)

or
2 w?
(k I-kk-% g(k,w)>-,§(}g.w)
; L (k,t=0)
== 3 7Bt = 0) + ok x B (k, ¢ = 0)4 ——e—
+E!-w€—o ,«,Ie (,lgs “’)-,S/cz
Thus R(k,w) o B(k,0) =g (9)

Some controversy exists among Vlasov theorists as to the results
and limits of permissible initial velocity distribution function perturb-

ations. For a source problem, one avoids this by starting with only the




external source and allowing the distribution function to emerge naturally,

that is § is taken to be ju ,'\J‘e(,lf"")/%‘

The formal solution for E (k,w) is then

E(ke) =R (50) - 5k )=£%g’(k,w).ge(5,w) (10)

(k,0)
where & (ko) = % . (11)

%2'(}2"") is the transpose of the cofactor matrix of %(g,w) and Rj Q‘c,w-) is
the determinant of %('lg,w) The subscripts are reminders of the order of
the products in gz(g,w) and 113('15,(»).

Since the & elements have dimensions of frequency squared, it

is often convenient to define a dimensionless function D such that

D = w °R; (12)

One can perhaps appreciate the result more readily if one realized that
the g‘(}g,w) is the Laplace—~TFourier~transformed tensor Green's function
g’ ('x;,t) for the problem. This is evident since we have the following

result on inverting the transforms of the equation for E (k,»w) and using

the convolution theorem for the gt;‘ (k,0) - S(k,w) product:

=] at! fdsr'§'<£"£" t_tv):i('at’tt)

(o}

where &' (£,t) is the transform inverse of R7'(k,w) and is evidently




the Green's function.

The E Green's functionor its transform evidently gives one the
option of inserting arbitrary éources, providing the integration can be
done.

If the behaviour of the antenna impedance is a factor (as it in
practics) it is convenient to use the time-Laplace transformed Green's
function gﬁEa“) since the impedance is given in terms of w. The equivalent

equation is as follows:
Hpe) = - [ @ gamg, o) - 5a0)

Failing a more general solution of the problem, simply
studying the form of %‘ or &is worth while,

Before discussing the behaviour of %’ or 5. there is one question
to settle,

An advantage of calculating g(};,w) or g(g,w) is that one can
see when a singularity appears whose frequency is unlikely to be affected
by the transmitter-receiver impedance (in contrast with a simple pole
which is so affected). However the actual problem can only be solved by
including in self-consistent manner the transmitter receiver impedance

and the_boundary and current field relations on and in the antenna as is

done for free space antenna, well described by King (1956)., In view of
the intractability of the plasma problem this is far beyond the reach of
current theory.

The problem is therefore limited to considering a source with

a plausible specified current or charge distribution for excitation
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(equivalent to a zero impedance source) with no boundary restriction and
an ideal non-disturbing electric field measuring device (infinite impedance)
as receiver (an ideal current density sensor (zero impedance) could also
be considered). This procedure is, of course, inconsistent and unrealistic
but is the only procedure likely to produce any answer, considering the
present state of theory and the diffic;ulty of the problem.

For the Maxwellian plasma the %S'li,w) elements have no
singularities in the finite complex plane of their argument in the region
we explore. In general the only other singularities of E(‘lg,w) for finite
k,w values will be the zeros of Rj (k,w) i.e. of D. Setting D equal to
zero is the dispersion equation and D is called the dispersion function.
From it one can determine the characteristic behaviour of the medium.

The study of the dispersion equation is the theme of Part 2.

The zeros of D(k,w) do not by themselves single out any
particular frequency for attention, but relate w to k. To obtain some
particularly significant 'ng combination an auxiliary condit;'Lon is needed,
indicating the likelihood of singular behaviour. The pinching or coalescing
of singularities across the integration hypersurface in complex ’I&w (6~

dimensional) space results in singularities which give the anticipated
singular behaviour. [The Bromwich inversion line is on one side of the
singularities for Laplace transform inversion and cannot be pinched. The
k-pinch however introduces a different w singularity from the usual
simple poles in the w plane.]

If one considers the k-derivative of D(k,w)=0 equation the result

is

_ . Qw 3D(k,w D (k.w
% D(k,w) = 0 = = A=l 4 S
o~ Lag) ~
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Now the conditions that two roots may coalesce is (part 3)

%zlzl(k’w) =0

So long as 3D(),w)/0w itself is not zero the singularities in the Green's

function can occur at points where the group velocity is zero, i.e.

[e5] [e3)
;wJe
I

For an observer moving at a nonrelativistic velocity Y the

aw/b§\= 0 condition in his frame of reference becomes

in the plasme frame sd the wave packet keeps step with the observer.

Hence one is led to examine the dispersion equation for these
points of zero relative group velocity. [Strictly speaking, the concept
of 80/@& playing the role of the velocity of a wave pocket fails as other
terms become more important, so in the vicinity of 8au@u£ = O the name
"group velocity"™ is inappropriate, but is more convenient than inventing
another title for duw/k.] |

Since the satellite velocity is much less (~ 1/16) than the
electron thermal velocity and is very much less Q~5x10'5)thanlthe velocity
of light, a good beginning is to consider the points where the group
velocity is low and can be equal to the satellite velocity. So far the

approach is quite general. To proceed further one must get down to
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particular dispersion equations and look for the interesting qg combinations.
These will be discussed in the part on Plesma Dispersion Equations (Part 2).
There are collective plasma zero group velocity frequencies (i.e. explicitly
dependent on electron density) at the plasma frequency (wp), near the
transverse resonance frequency (w_2 + wb"’)'15 (covered by Nuttall (1965)) and

W

b\, % .
% > t > discussed by

the left and right cut-off frequencies <<9p2+
Sturrock (1965)). These do not concern us directly here except for the
connection (observed and very plausible from theory) between the transverse
resonance frequency effect and that at twice the gyro frequency.

The behaviour near the cyclotron harmonic frequencies is much
more difficult to follow and seems impossible to resolve without the
relativistic formulation.

The general rationale for the layout of the report can be seen
to follow from this outliné of the basic theory. The elements of the gb
(k,w) tensor and its inverse are products of kc and the elements of
£ (k,w)w?/c?. Hence the first step is the study and exposition of the
relevant dielectric tensor elements. This one subject of Part 1.

The dispersion equation (Rs(k,») = 0) is next taken up in Part 2. After
a brief introduction (with aﬁ illustrative example) Part 3 discusses the
pinch method and its application to the pinch of interest for the
Alouvette cyclotron harmonic. These three parts are fairly mathematical
in nature and so Part 4 is a summary of the work without the mathematics,
and with more emphasis on physics. It also contains the conclusions and

suggestions for future work.
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I.

INTRODUCTION

In this report (Part f), we discuss and simplify the dielectric

tensor of a plasma near electron cyclotron harmonics. A relativistic

b e e
) s e i

S

approach has to be used since the difference W = nw, (between angular
frequency and cyclotron harmonic frequency) is less than Vtz/.b2 in
many wave number regions of interest. We restrict ourselves to small

transverse wave numbers i.e. we take A = kjfvtz/bbz less than one. At

 first we consider general values for k" (wave number perallel to

magnetic field) but later we consider Ahly the region k,, cz/bgi ? 1.
It will be shown in Part 2 that with such small values of k,, we can match
satellite velocity to group velocity along the megnetic field.

A relativistic expression for the dielectric teﬁsor‘f‘of a
plasma was obtained by Trubnikov (1959) which will not be re&ééi;ed
here. This expression is exceedingly complicated and simplification is
necessary for further analysis of dispersion equations. For k,, =0,
Dnestrovskii et al (1964) have obtained such a simplification. Original
contributions in this report are the inclusion of k,, in the analysis and
the deriﬁation of the dielectric tensor elements f'or complex w and real k
rather than vice versa. The latter extension requires the analytic
continuation of a complicated function,

In the analysis, we neglect collisional damping since it is
negligible for the times of interest during which harmonics effects are

measured on the Alouette.



II. GENERAL VALUES OF k,,

Trubnikov's equation for the elements eaﬁ of the tensor g is

2

iw s ? (1) (2)
- = —2 c K (VR) - K:g‘fR) |
eag 53‘;3 - war, vt4xz<§_z!) [dE{ R Tap A Tap } (12)
t

0

where
cos § ~sing 0
Taﬁ(1) = sin g cos g 0 (1p)
0 0 1
k, ®sin’g -k?sin E(1-cos E)  kk,E sing
2
Taéz) _ ;c_z_ k,®sin E(1 - cos E) -k 2(1-cos g)® k,k,E(1 ~cosE)
b kk, & sin g -k, k, E(1~cos E) k,2g?

(1)

Kv is a MacDonald function of order v.

o2 0 \2 kK, Cy2 k,2c%g?
R=<;7-i€w—> +2<-w—><1—0086>+——-z—w (14)
t b b b

w, = /ne*/eom is the plasma frequency, w, = eB/m is the angular
cyclotron frequency, v, = [kT/m is the thermal velocity and i, n,, e, €o,
m, B, ¢, ¥, T and w have their usual significance. The wave numbers
perpendicular and parallel to the magnetic field are denoted as k and

k,, and taken along the X and Z directions respectively. In the following,

we denote by u = cz/vtz, the square of the ratio of light to thermal

velocity and let this be very large.
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In the very weakly relativistic case (u >> 1), the argument of

Kv is large, and the asymptotic expression

K, (x) = /—g—; e

applies. Thus we find

g - by =Bk o [ B g () (20)
“ap af ~ way H a af
R
0
(3)
where Ta‘3 =
ky3ef k,%c? kgkgc?
cosE—aTb-qi sin%E -sin5+5?7§ sing(1-cosg) - 7?75 £ sin g
‘ k, 2c? . k,2c? \ k,k,¢?
SZL_I}E" W sing(1-cosE) cosE + W (1 - cosg) - —{‘T;zv—ﬁ E(1-cosE)
kiKugz k, kyc? k,2c? .
o, TE Sin & 5% B(1 - c0s €) 1 -k
b b b
(2b)
Next we simplify the expression for R by assuming (k‘Lvt/wb)z,\g 1,
so that

iF‘Q 2 knzvtz %
YR = u[( - ““’b) + -“—w;r&;z:l + A(1 - cosg) (3a)



where
1
2.2 2 2. 2,2 -z
k, vy Ew ky vy g
A= —7— - ey, (3b)
C Y% Hidy, Hay,

The sbove expression for VR has to be used in the exponent.
However in the Tap(3 )~matrix and in the ng4 factor, we can omit the
A(1 -cos E) part of VR. Thus we see that kfcz/wa\/'R % A. A point to
note is that the k,, part of A is multiplied by E® and E? varies from
0 to », so that care must be exercised in any approximation for k,, .
At the moment, we leave the range of k,, arbitrary.

At this stage we can introduce the familiar modified Bessel

function (In) expansion:

xplh 03 &) = ) T,0) exp(-108) (12)

Using Eq. (4a) we note that:

sin E exp(A cosE) = - jlt ?i% exp(A cos E) = Z -LX- Z[ne—'inE _ (4b)
cos E exp(A cos E) = -;A- exp(A cos E) = y ’.[n’e'ing (ke)
1 a2 'L, i
(cos £ - A sin®E) exp (A cos E) = - 3 exp(A cos E) = Z-—A—- e (44)

[:- sing + A sing(1 -~ cos&il exp(A cosg) = (—-a% + 'é% %)exp(A cosE)

- Zin(xn- 1 1)eminE (o)
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l:coss + A(1-cos g)z:l exp(Acosg) = <A a-z‘z + (1- ZA)% + A) exp(A cosE)

- Z ‘:DZI“ + 2A<In-In'>:| e (ur)

- - - 2 2
where I ' = dI (A)/dA and In"._. In{/A + (1+n%/A ).

Further observation shows that

2k, 2c? 3 R (4g)
R K 3k, ©

b
and changing variables to t = 53—, we find that & = i 565 o in&
b
)
. ) . b
t=1-—;—— exp-:.nu;-t) (4h)

s

Hence the form for eaB becomes

©gteh (L")exp(p- \:(1-1t)2+k ¢ ti} 1nu—t}

w ? \-‘1
€ -8ap=i—wg-u 3

3 (5a)
N ke o [(1-:11:)’ Lo tzj/‘
with
n?I
“ ~in (I '-1) 0
n®I
Tas(l")=|:(1~it)’ kZolt? t:] in(1_'-I_) 2 4 (1 1) 0

0 0 <1+k,, ai,,)



n
0 0 x
klk,,c" 3
+ 0 0 ifT t-1I \ (5b)
way noa ( Yy ) ‘
nIn 9 ““ZT
anp— - | -
T 1<In In) 0
and
k 2 2 k-L vtz
A-A[(1—it)2 + s AW ——g— (5¢),(54a)
b

Let us now restrict ourselves to A << 1 rather than A ~ 1.

In this limit

n®I nzIn p2pn = !
T E A ) e (@ - 1) e T (6)
n-

It is also proper to change the sum over n to start from O. Note that

I_n = In and the n = 0 term requires a < —~8—(21—1)-> factor since this term

is included only once in the summation. Define furthermore a function

} dependent on two dimensionless parameters Ho, n/w and k.,c/w besides q.

24.2,2
urw, ko o dt exp{u y[:(1 -it)2+ t :l 1nu-—— t}
%(%T} =" if

> [(1 - it)? + E"’"‘;z—"J

(7)

q o w

nw,
As a result writing ;(%) ;< wc) * %( kyo c) we have for

A<t




Fy 2 FE o

2 © :
W 2.n-1
-5 = - §onlA_ . (b) (a)
n=cl. ‘
o] 0 0
0 0 d\
0 .
A - (a)
+ 2nn'. 0 0 0 akn (k,, ;nq» %>
5 0 0 1
/

5}(

?& “n+%

Before proceeding with the analysis, it will be reassuring
to show that we can obtain the non-relativistic dielectric tensor
expression under appropriate conditions. Let us use the more general

formila in (5a).

W= W 2,2 W = I 2
b k,“c b k,C
When —— << Sh=—— e Vf'k—_,,vt m << —"—wvt (9)

the main contribution from the integral arises from t << 1 (see Sec.VI),

in which case,

3
22,2 2,2,2
[(1-11‘.)2 k Ct ~1—1t+—“—-—z——k c



in the exponent and unity in the denomenator.

we are left to evaluate is

Also A = A. The integral

7 dt exp{i ut < -%—’) - Hﬁn%‘%;t—z} =e 7 e dx/(?ﬂ’v_d/ Z(é)<§7§'}k§§8’>

[}

where
W - W 2,22
b k,“c°t
s = Vﬁvtk“ » xm L - VZV&y

(10a)

(10b)

and the integral is given in terms of the "plasma dispersion function"

(Fried and Conte 1961).

z(z) = Zie-zz./. e-xzd.x

(10c)

Substituting these results into Eq. (5a) we obtain the well knovm expression

for eaB (see Stix (1962) p. 188 or Fried and Conte (1961),for example):
2
In -k LV nIn
- ] . ov—— 1
X Z 1n(In In)Z V-Z-w—b—- x Z
-\ 0
w.2e -n?T N -ik v,
- = 3 - ‘ n - -
Sup” Sup = W in(1 '-I ) L + 2A(T - II;)_lz W(I' 1)z
n= -
k.Lvt nl ik, A
CTe | ym (e | -z
b Yy
(11a)
where Z' = d2(%)/d% = -2(1 + 42) and noting that (111)

YV N\ d 3 3 1 oot
- <'é-2—12"72-> EZ and <1 + k" 8k,,><—;> = ‘-a—l;“-Z(é) = - '1-{—"- ZZ




Sometimes it is convenient to sum n from 0 to & rather than
- » to w. If one changes n to - n, one notes that I_n = In whereas the
argument of Z changes from & = (0 - nwb)/\’?vtk,, to g, = (0 + nwb)/ﬁvtk,,.
Since the n = O term is included only once, we require a (1 - §(n)/2)

factor. Thus writing Za = Z(L_’,a) and Zb = Z(éb),
0 26 = 5 i
gnz ¥
®ap~ %ap = GE,vV2 2(1 ol >.¢;,><
: n=o '

n?1 -k, v, nI

. (Za."' Zb) -in(Iﬂ_In)(za-Zb) Yowu. A (Zz'a. - Z‘t'))

n®1 -ik,v,
in(Ir'l-In)(Za-Zb) [TE + z\(In-I;él(za+ zb) 7—.—-(1' I (2 +2))

-kLvt nIn ik,_vt
—({ 7t [ t t - [} t
Vzb A (Za Zb) Vﬁb (In In)(za+zb) In(éaza"'ébzb)
(12)
Finally we note that in the limit A << 1 and subject to the
conditions in (9), the relation between JF and Z in simply
1
F = m) (13)

ITI. THE CASE OF SMALL k,

By small k,, we mean

ko2 g vtzwz/c‘ (14a)
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This 1imit is of interest since it will be shown that the satellite velocity
can be matched to the wave group velocity along the magnetic field for very

small k, values. Subject to (14a)

(-]

it tz ‘K2
= -1 | ————— i - 14D
3{’1 1[ (1 -it)q exp[:,u&t 2v wZ(1- 11:7 (140)
o
0 -
where § = ——— (14e)

Note that in this relativistic approach, we are not faced with the "problem"
of which is smaller k“vtwfz or w- nwb in the Z argument of the less exact 2
function.

By further expansion, we can now relate the ;‘f'unction to a
simpler one F, a function of one variable only. Define

co

F §)m - 3
q(u) i

at eH3%t

(1-1t)¢

(15)

Then from Eq. (7)

} wy k,cC .mdt eip’o‘t . t2ceks ctk?
q(nw ’ w )" —t (1-it)q< -2vt{w2(1—it)>' q” 2v (F 2Fq"'Fq+‘l)
0
(16a)
using -t% = (1-1t)®- 2(1-it) + 1. The same relation holds for

%(-unw.b/w, k, ¢/w), if we substitute u(w + m)b)/w for the argument of Fq.

With this relation we find

2, d) = F, 2—?&; (g =2+ F ) (160)




“p\ v 1-it)d
w
(16¢)
3 “b Xy
Similarly — ——— 3‘- g =B=) = - + F
a/ Y q W w q-1 q
nu—;)
As a result, one can write Bq. (8) as
1 0O 0
e WP W Ot 2 (2) 2(2) _ gnla)
- 80:[3,= w: H Z{ S0 o 1 0 n+’/ tzwz n+'/2 2Fn+:‘/z
n=o 0 0 0

)]
-i 0

i 0 0 [“2 (b?/ ZF(b2+F(b2 \:]

0 O
0 0 O
A" (a) 3k, 2c? (a) ( ) (a.
+ 2nnl 0 0 0 l:Fn+5/2 + 2vt w n+/ - n+5/ +/z
0 0 1
. 0 0 1
k k,c n-1
. —_ "D\ 0o 0 o0 [ (b,,)/ + 7P)
Wy 5Pl n+7/2 n+%s
1 0 O/
0 0
K kwe? 01 (a), , p(a) 8(n)
ekl L R A A Gy I
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pure 1.2 x o (S e, [o(S)]

The nonrelativistic limit can be shown to have some validity

in this case if we assume that
ud >> 1 or (w- nwb)/w >> v,cz/c2 (18a)
Because of the condition (14a) on small k,, this implies that

w—nwb th

Z = m,,vt > T > 1 (18b)

Since (18b) contradicts the inequality in (9), we have to be careful in
applying the Z-function unscrupulously. We now show that the Z and F
functions give the same results provided Wwe limit ourselves to

Im w> 0. That is we shall not compare analytic continuations of' these
functions for Im w< O since they differ (see Sec.VI). Omission of the
contribution arising from the analytic continuation (usually of exponen-
tial form) implies that for k,» O we omit the contribution to .5('-1 from
the region it = 1 (see Sec. V). In this case, the approximation in
(10a) and Eq. (12) are valid. To summarize, when the analytic
continuation of the Z function is not required (Im w>0) and £> 1 from
Eq. (18b), we can expand the Z function in Eg. (12) for large arguments

and indeed the exponential part of Z is zero. Thus

1 LI S T BV
zN-Z<1 +27>,Z 7T GZ ~Z!‘(1*'§£!'> (18¢)
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Noting as well that

73 o vtw/? anb
za+zb =—k,,vt2w1—_?-w—b(1+a.) ; za-Zb=-k"m;(1+az)
2 2 2
2(w +n’w ) x howo,

t . 2 2 . - t 2
zy + B} = ka22v, [CHEN e SRR s hCiEromaL

where

w24+ jnzwb"

= 2 2 . - 2, 2
%= vk, ((wz -n’wsz> ;o2 = vtk <(wz -nw *)

(19a,b)

we derive from Eq. (12) that

€ . =8  =uw ""'e-)\»»z My X
af  ap P w® = n%w
n=o

naIn . nzwb ' k k,v tz 2n21n
(1 -l- a,) Y —1(1+a2) m (I;l - In) wz_nzwbz Py
np n?T ik k,v, % (w?+n?w?
. broy_ n _ rnt bliqr_
(14, )T(II'I In) Uw"{ At 2A'(In I;x):] (wz_nzwba)wwb (-1
2 2 - s 2 (2,2, 2
kykyve™ 2071 ikylyvy " (@%4nfuy )/It-I ) (4 + 3a)I
mz—nzw.bz A (wz-nzwbr) way ‘*nn '/ n

(20)
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For A << 1, this reduces to

™
14 ay -i(1+az )'—'— 0
w
= w_2(8(n)-2)| 2,n-1 nw
y ~ A ?1 i(1+az)-;t-’- 1+ a4 0
- ‘w n"wy 2 n'.
0 0 0
-
0 0 1
0 O 0
2 - 2,2 2
AB k‘Lk"vt opzy -1 (w*+n®ay )
T 0 0 0 * Won%. 9 0| 0 0 T 0w w
2 n. % 2'n. b
0 0 143a4
1 (w2+nzwb2) 0
N —
anbw
(21)
This latter result is identical to that obtained from Eq. (17),since for
ud >> 1.
. iudt -1,
Fq(pS) =-1i[ dte = (us) if Imw> 0. (22a)

(o]

-3
- ~e - -z - -
Fo~Fo 4= (u8)"% and Foq = F +F g = 2(us) (22b,c)

We have thus shown that for Im w> 0, the relativistic analysis reduces to

the nonrelativistic one for ué >> 1 and k, zero or very small,
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Near the nth cyclotron harmonic (n # 1, see Sec.IX), * w = mw, ,

@y = @2 = a say, etc. Besides the n = 0 and n = 1 terms, we need to keep

only the n th harmonic term. Then we can write & = Eeo1a * Ewarm (23a)
where
w 2 iw zwb
t- w'—wb! wiwg—wbzs 0
- iw 2wb w 2
(ecbld)aﬁ = wa?-wb’S 1- zz?;;r 0 (23b)
w 2
0 0 1 - B
w
For the nonrelativistic case (Eq. (21)).
1+a -i(1+a) vaX/n
prz nzAn—1
(ewa.rm)aﬁ= T wi-n®w. ® n i(1 + a) T+ea War/n
b 2'n!
YaA/n - iVah/n A1+ 3a)/n?
k_'_k,,vt"'Zn (230)
where Va\ = pri g 20 For the warm terms, it is convenient to consider
b

b* When w= nw, , the

contribution from -w is negligible of course and vice versa. For this reason

positive w near oy independently from negative w near nw

we restrict ouréelves in the following to positive w bearing in mind that
negative w can be treated in a similar fashion. Thus in Eq. (23c) we cen
set wz-nzwgzerb(w-wb) if we wish, Similarly for the F function, we only
consider arguments (w-nwb)u/w. A general relation for complex w is (Landau

and Lifshitz (1960) Vol. 8, Sec. 62):

e( -w*) = e*(w) (234)



- 16 -

Thus for the relativistic case (Eq. 17)

w ? n1|/V 7E 0 k,2c*
(e ) =——%—un2" $ 1 0| (P 5 +=—az(F 1/-2F 3,4F 5
warm’ af w B n+7e" 2V W0\ D+ Ve “Tn+hT
‘ 0 0 ©

0 0 O 3K, 2c
+ 000 ?[Fn+%+ 2vtzwz F'n+3/g- 2Fn+'72+ Fn+7/2>:|
0 0 1

0 0 1
k k,c? '

+ e 0 0 i [—Fn+%+Fn+%] (23e)
1 -1 0

IV. THE CASE OF k, = 0 AND THE F FUNCTION

For a wave propagating exactly perpendicular to the magnetic field,

the warm elements of the dielectric tensor are for A << 1 (see Eq. 23d,:

2

w n2}‘.n-—‘l
€11 = €22 = 1812 = - i€2¢y = - 'u')%" U —_;IEHTFYH'J/: (24a)
w 2 AR
€33 = - pr H 2n ' Fn+5/2; €43 = €23 = €39 = €32 = 0 (2)-{-b)
ni
where
. dt st c? W=
Fq(“a)"l[“f‘"“zzew N e (25)
D1 -1t) t

0

The above relations were first given by Dnestrovskii et al (1964)

who also plotted the real and imaginary parts of the function for real w and

n=1,2,3(see Fig. 1). For real w and wg ., (viz u8 g 0), Dnestrovskii et al

also give the following expansion* for F(u8 < O) written here in terms of the

Gamma function I and ar integral expressible in terms of the error functionéd.

* There is an error in Dnestrovskii et al (1964). The sign of the last term

is negative as given here and not positive as given in their Eq. VIII.
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q-ié 1 1
7o(a) = ) lusl? Hgriged - Lul s ”f;_t)% at-giylusl ol
p=0 o

(26a)
%

=) el R -y I q"1e'|"8'|:1—@(iﬁm‘] (26b)

p=o

In Sec.. YV we shall prove this relation and also give a more general
expression valid for complex w.

Since we are dealing with a time decaying signal (after the
satellite transmitter is shut off) or an initial value problem, we have
to consider complex w, rather than only real w. The complex w is an
inhérent feature of the inverse Laplace transform which gives the time
decay of the signal. If we were dealing with a function which is real
for real w then it is simple to apply the same function for complex w.
However, since F is complex for real w, the dispersion relation which
includes F will require complex k. This situation is appropriate to a
steady broadcasting transmitter with a decaying signal in space. For
our situation however, we are interested in a space localized signal
decaying in time, or real k and complex w. Since we wish k to be real,
F must be real and this can only be done if we letwor Z==p8, the
argument of F, be complex. Furthermore, it turns out that we have to
define F for both Imz (or Im w) greater or less than zero. That is,

F has to be centinued into the lower half plane Im z < 0, although the
oriéinal definition applies.;nly to the upper half plane Im z > 0.

When F is real, it is shown in Sec.VI[that Im z < 0 (or Im w< Ok
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In the inverse Laplace transform we integrate over e_mt and we thus
derive a time decaying exponential e-wit. However we find in Sec VI,
Eq. (40d) that w; is of the order of m),b/u so that this relativistic
exponential decay is negligible for our times of interest ard the actual
decay must arise from the other time-amplitude factors multiplying this
exponential. Although the exponential decay factor is negligible, we
still need a relativistic approach since the F function has to continued
throughout the complex w plane and be used in the region of

Re(w—mb}‘K vt"’/c2 within which most of the w versus k variation occurs.
The nonrelativistic approach is only applicable for |,u8| >> 1 and

Imw> 0, in which case F ~ (u8)"', as shown above in Sec.JI.

ANALYSIS OF THE Fq FUNCTION AND ITS ANALYTIC CONTINUATION

Starting from

oy [etar
P (s) = [(1_it)q (272)

where q is a half integer and assuming Im z > O for complex z = ud,

we can integrate by parts a sufficient number of times until the power g

is reduced to %. We obtain

Poat o2 . (1) +(_1)q-’/zzq-a/z
a” a1 7 (¢=1)(a-2) 7 (q=1)(a-2)(g-3) © **""" 7 (a-1)... %2

l(_1)Q"/z a-% F
(q-1)...- [(1_1t)/z

»3
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(-2)P I‘(q-{l-p) . i(-1)q_%wfu Zq-‘/z F ei2tay

I'(q T'(aq) ! (1-1it)72 (270)
Now Z%Z =i /? ez|: -q>(fz)] (28a)

where ¢ is the error function. (The above can be verified by defining
& new varisble of integration equal to Vz(1-it).) ~Furthermore we have

the following equation for the Z function in terms of the error function:
2(iy) = W7 & (1 - 8(y)) (26b)

As a result we can relate Fq to the Z function which is already tabulated,
thus 3

% Y 2
_ I'(g-1-p) (-2)3"72¢ -
Fi= ) (-2)° S + /gy s [1 Wz):l (29a)
p= .

= qi:fb (—z)puﬁ%ﬁl + 1(2 (-z)q-}/z {::'u/_z‘z (iw/'z):] (29b)
P=

5

(-z)¥ 11%%-522 - 5;-71??1-)- (-z)q_z/z Z'(ivz) since

Z'(¥z) = - 2 [1+ V7 2(ivz)] (29¢)

When z is real and negative, -z = ],u8| and taking Y, ~|u8] = id_}u&l we see
that Eq. (292) assumes the form given in (26b) or given in Dnestrovskii

et al (1964). The imaginary contribution in (26b) arises from the region
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around it = 1 as shown by Dnestrovskii et al who rotate the contour
through 90°. Note also that for real z, Fq has an imaginary contribution
only for z < O (see Fig. 1) since q is a half-integer.

To be of greater use, the Fq(z) function defined above only
for Im z > 0O, has to be analytically continued for Im z < O.
Fortunately, we have succeeded in expressing F in terms of Z, a function
whose analytic continuation has been considerably investigated (see Fried
and Conte 1961). Thus we can allow Egs. (29b,c) to be valid everywhere
in the complex z plane using the proper continuation for Z.

The following expansions of Z(Z) are valid throughout the

complex % plane (c.f. Fried and Conte).

. -2 N 2 3
2(2) = 17 S5 - zsz (- VE/E(L + %) (302)
1=0
For |Z]>>1 2(g) ~ Wao e~ % - Z gL+ Vo4 DM (30b)
1=0
where 0 = 0,1,2 for ImZ > 0, Im & = 0, Im & < O respectively. (30c)
2 o _
Also 2'(2) = - 2Aoze = 4 2_' s 2(1+1.)1‘(1+ %) (304)
1=0

Let us now substitute Eq. (30a) into (2%). Using q = n+ %2,

we obtain
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H(n72)F,,,5, (2) = Z(-z)Pr<n-p+%)-w<-z>nﬁez - w(=2)™"! }: 2 /0 (14%)

p=0 1=0

Since [Tfl + ’/z)]'_"=r(-l-1§)cos (161))/m = (-1)1 1I‘(-—l-%)/1r
(see Magnus and Oberhettinger 1949, p. 1), the last term becomes (after
changing the summation index 1 = p-n - 1) Z (-z)Pr(n-p+3).
p=n+1
This term‘ completes the series given by the first term, so that the net

result is

o

P(nt ) (8) = ) (-0)PD(n-ped) -wlca)VEe® (312)
This form shows that Fq is composed of two confluent hypergeometric
functions which are the two independent solutions of the Kummer

differential equation:

arr aF
z#-&-(?-q-z)aq-i’q:O (31b)

The two independent solutions are (see Magnus and Oberhettinger 1948, p. 87)

-1 -1
1 (1, 2-q, 2z) and 24 1F1(q,q,z)lzq e? (31¢)

Note that

1F1(1,2-g,2) = Z %)' =1+ qu"' (2-:;(3—q) + ..e. (31d)

p=0
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so that upon comparing (31c) with (31a) we see that

<-1)q’%{zq'1e"]

Fq(z) = -G—}_Ty iFi(1,2-q,2) + 3 (31e)

Besides Eq. (31b), one can readily prove using Eq. (27a) the following

relations:
]
- = Fq - Fq-‘l | (32&)
21 .(.9'_1). . - = -
Fq—‘l == Fq F(1-q+ z) = zF 14 Fq+1 (32b,¢)
| - -
z37* Fq(‘l q) + q Fq+1 =0 (32d)

The above series expansions for Fq are especially useful in considering
cases when | z|<<1.
For large arguments, |z|>>1, it is convenient to substitute

Eq. (30d4) into (29¢). Using again q = n+ ¥, we find

n-1 [ )
P(av %P, 543) Z (-2Pr o) - wo(-2Y N - ) 2% (-2
p=0 1=0 (33a)

where 0 = 0, 1, 2 for Im iVz greater, equal or less than zero respectively.

If we write 1 = n-m-1 in the last series, then it becomes
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YZ (~2)"r (n-med) = - Z (—z)mI‘(n-m-*%')-.Zw (-2)"F (n-me)

m= n-1 m = n-1 : m= -1
n-1 o
s - Z{(-z)pl‘(n-pd-%) - Z(-Z)'P-1I‘(p+n+’/z)
p=0 =0

where m = p in first term and m = -p-1 in second term on right hand
side. Combining this with the other terms in (33a), we obtain some

cancellation with the result that

I'(n+‘7=)Fn+3/z)(z) = - wo(-2z)V3e? - Z E.%ll‘)%:é'l (33b)
p=0

70 >0

where o = 1 for Im iﬁ

|
\ 2

0

A

Before we investigate the complex values of z which make F
real (see Sec.VI]), let us briefly turn our attention to the 5(‘1 function

and the variation with k, of the second(exponential) term in Eq. (31a).

VI. PARTTAL ANALYSIS OF THE 3(‘1 FUNCTION

Previously we have shown in Eq. (31e) that Fq is composed of
two hypergeometrié functions. A similar analysis on '?Zl is very much
more complex. Nonetheless, one of the functions comprising 321 can be
investigated for various k, values. This function corresponds for k,=0

 to the exponential term in (31e). It will be shown that as k, ranges

from 0 to above w/vt, the form changes from
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1
(-1 lq-z”(us)q~1eu8 & ifne{‘z
T(q) ° Z-Vﬁk"c27vtw$

the latter corresponding to part of the Z(Z) function. Such an analysis
will also prove the assertion in (9) on how large k, has to be before
nonrelativistic analysis becomes applicable.

To illustrate the change in ‘;q as k, deviates from zero we use

the form for ‘% given in Eq. (14b) valid fer
‘fl-l‘y = czkn/vtw s 1 where y ® k, c:/“" (324-)

. -t2c*k,? B 2y s+42 Y2
Then since m—z Yy +1ity" - 353

_ s muy?/2 at L B .2 B 2
3(-1_ ie [Wexp 1t2(28 y)+2-(1—_-¥T€)-
0

. 2 _ 1 uy? p
Expanding exp <§G%'Lm) = Z T+ 1) <2(1 = it)> we have

P

F=- s HY/2 Zp(mzn)P rﬁ:n) [o (1_1?);‘1"'1’ exp [Ltéﬂ (28-Y’):l

Jads Z(u?)p T Forr (lé (2-v? >> )
P

using the definition (15a) of the F function. Egq. (35a) is general in that

it includes both solutions of the hypergeometric function. We now show
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that the exponential part of F (see Zg. (31e)) can be summed. Denote

this part of ‘;q by \%(1). Then, since z =% (25 -y?) here, we obtain

1]

‘ P"'Q"'é / p+q-1 2\P
.n;qm m explu(a-yH] 2 I‘(plq)l‘(pﬂ) K“s iy > ( 2’)

imexp[u(s - yz)](1 -58> I- 1[_118 /=28 +y -l (va%/li yor

where I is the modified Bessel function. Note that for
real y and &, Fq(1) is purely imaginary only for -28+y2> 0 or
-2u8 + py®> 0. Otherwise the I function converts to a J Bessel function,
-28 + y? becomes 28 - y?, the i disappears and F (1) becomes real.
(In particular for y = 0, we know from Fig. 1 that for real w, Fq is
complex only for §< 0.)
We now lock at two ‘1imiting cases of Bq. (35b). For pyl| 3| —12_« 1,

the small argument expansion of I gives

(Valid for

3 (1)=- ieua(—pS)q_1-Tﬂ—y{1 - H-L- 2+L+L-J} yav < 1 and (35¢)
4 wloly << 1)

which is identical with Eq. (16a) in conjunction with (26a) or (31e).

4
For uy| 8]5» 1, the large argument expansion of I yields

51_2

?1(1)=-i/%%<1'>%8’>2 { l:/——ié'-y:l} ;ilii%) (354)

1
We show later than this formula is actually valid for 8§>>vy> .
ow la y 1id 1or Y m
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For larger values of y or k,, the form for 52 in (14b) is
invalid and we must use the original definition in Eq. (7). Let us

make the transformation

it = o z[1- 1(1”5)51 + ie
V' Tee-a

then [(1-1t)?+y??] = [m - 1e(4 -sﬂz v €2 (y?+52-25)

The motivation for the above transformation is that, as we show below,
first order & terms cancel in the expansion of the exponential factor

in‘sz and only terms of order €? or higher survive. We find

- q//z

765{ -y—-:-ﬁ-z——; - ie(4 -a)]2 + e2(y%+ a’-zs)}

x ”(s‘yz) py(1=8)% ) (4-8)ie- [———1——-1 1-8) w2 2+82-25:lé]
exp{ R4 +(1-yz)w/y’+8’-zes w(1-8)e - <fy5+a’-za' o >+8(y' )

(36 V)
where c =[ -—‘Lﬁ—'iL]/U y?)

VyZ+62-25

The contribution,;a(1) is obtained by taking the lower integral limit as
zero, (i.e. subtracting of the o to ic contribution) and letting € » 0.

Note that first order terms in € cancel in the exponential. Thus
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2 2 : > 2 3
H0 - 2 fenlg  ofn)
Y A |
--iJEC (y2452-28)Y/2~ % oxp| L(8=Y* J4u i) (Valid for
N7 ] P T-y* y #0)

(36b)

For y<< 8 (1-y*=~1) and neglecting 62 terms, Eq. (36b) reduces to (35d).
Hence we can extend the range of validity of (354) as we indicated. Also
1
the lewer limit of validity of (36b) is obvi 1, > .
velidity ef (36b) is obviously y ST

In the third limiting situation of y?>>38, we find from (36b)
that

R R R A B (| B e

(36¢)
. %2 (w-rw, )? 2
. iVr e b é
~ ' e “’vt where éz = -Z-k::z-;-;r = —2;,#- (36(1)

Since :'L\/E’e-é;z is one of the parts of the Z function (see Eq. 30a) and
recalling Eq. (13), we see that the transition of the zl function to the
Z function has been demonstrated at least for part of these functions.
Comparing Eq. (36!)' and (36d), we note that the Z function becomes valid

only for k, large 'enough that y?>> § which is the condition given in (9).
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VII. THE TRACK OF REAL Fq

As we indicated in Sec. (4) we are interested in the frequency
track of real Fq i.e. in finding the values of real and imaginary w for
real Fq. Strictly speeking, wé should actually be concerned with the
function E;é rather than Fq. However, the previous section indicated
the great difficulty iﬁ a complete analysis or expansion of Eéf We
restrict the analysis to small k, values for which we get a substantial
component of group velocity propagation perpendicular to the magnetic
field lines, and then the damping of the wave (viz Eg(1) in Sec.VI) is
smally e are mainly concerned with k,° < vtzwz/c4 ih which case Eq.
(16a) applies to a first approximation and E%’z Fq to zero approximation.
Hence the track of real Fq very nparly follows the track of real ié'for
very small k.

In a nonrelativistic treatment, zz;f?;;;y _is the real function
that replaces Fq in the analysis.. Thus nonrelativistically, the function
goes to * » as 0 ~» . These are the dashed curves indicated in Fig. 1.
Relativistically, we note that Fq remains real for w > nws and is finite
for w = nw, . For real w < e, Fq is complex and bounded. The track
of real Fq to be found below is identical for w > nw. and w is also real

b
here. Beyond this w = T, point on the track, we can expect the track
for complex w to yield larger and larger values of Fq as |u8| increases
and eventually Fq goes to + . There is also a distinctly separate track

for negative Fq for which Fq goes to - ». These tracks in some sense

imitate the nonrelativistic behaviour.
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The mathematical statement of the above is simple. We recall
Eq. (33b) valid for large |ud|. The positive Fq trac%.which follows the
curve in Fig. 1 up to w::nwb is obtained by taking Im iVE§> 0 which is
satisfied since ud is real'and positive here. Hence o = 0 and for pé>> 1,
Fq is a decreasing function behaving as (pS)—1. However beyond the w = ),
point, we change to the lower sheet for which Im w< 0 or Im iVus < 0.(Sce
Figs. 2a,2b), Although the real part of w initial dips below'nwb, it soon rises
again above o, , S0 that the real part of ué is positive and steédily
increasing. Since ¢ = 2 in this case, F goes to infinity as
2n|us| e ~1elne b/;(q) Of course we cannot believe our analysis if § is
not small, but even for § = 0.1, e“ is an enormcus number,

The negative Fq track is also readily unde?stood. The track
always lies in the lower half plane. The initial part of the track follows
the dashed curve in Fig. 1. Although for this track Im ivud < O always,
and ¢ = 2, we note that the real part of z = ud is negative and copsequently,
the exponential part in Eq. (33b) decays as ol 2l and F decreases as z™
for large negative z. However,as increases,the real part of z

? real

becomes positive. Keeping w, negative (o = 2), Fq goes to minus

imag
infinity as - 2u|us| q-1"—‘|“8|/1"(q) (see Figs.2c,2d). Note that the
singularity of Fq(z) is located at.Im iVz ® ~ w Or 2 = o on the lower
sheet. The tracks one must take in either the z or iVz planes to make
Fq real are shown in Fig. 3.(If one follows the indicated w points,one gets the
tracks for real w and complex Fq corresponding to the results in Fig. 1.)

A schematic plot of the real function Fq versus the real part

of w is shown in Fig. La and an expanded view of the region where &< 1

(the region where our analysis applies) is also shown in 4B. Below we



give equations for positive Fq valid in the regions AB, CD, EFG, and EI
and for negative Fq in regions JK, and L.

Let us look at the track for positive Fc' The region AB is
simply that for which 0 = 0 and Fq(z) = z-' for large z. The curve AC
is identical to that plotted in Fig. 1. Past point C, z starts to
become complex. Denote z = |z]eie and note from Fig. 3 that 2w< o<

so that initially in CD, 6 = 7 + 86. Also since | z| is small, we can

write using Eq. (31a)

- Z
7(-z)" "Wz e

1 Z
R TSARR Crr I e T O

\

4
_A1 |z| €os @+ isin®) mlz otz {Zcos@. ij7 sin6 - 16 +i)
“(n+ D) (n¥-73%) -I‘En+3}zs s ¢ ¢ e

To make the imaginary part of F zero, we require

4
. n+3 | 2] cos 8
= ﬂf%&ne - ul ZlI‘(ni 7 sinE z| sin 6 +6 (n+ %) —nnJ: 0

This is possible for 6 = 7 + A0 with

n? - - n-% -z
46 = x n+j7:-§- w|z| " e | =l (372)
Then
z - rw
. I L e o s oo xr b
1n+%(z) = oyl (o) Vhere zp = real part of z~(. o >u

(370)
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It can also be easily shown how F is made real for large | z|

values. In this case we use Eq. (33b) with o = 2.

1_2n(-z)" z
Fn+,3/3(z) ® 2 Ty Ve e (38a)"
< rs . i6
Writing again z = |z| ' we see that

;)
(cos® - isin ) . on| 2| ™2 ol 2l cos 0 -im(n+1) i(n+%)6 i|z]| sine

A e P T(ne %)
| (38p)
To have real F, we require
sin@  2n] zln"'% |z| cosé_, . 1
e e 51nEz| sin 6+ (n+3)6 -11(n+1ﬂ= 0
(38¢)

Let us consider values of 2r2 63> 3w/2 for which cos6 > O.

a1
Since | z| is large, | 2z n"’zel z| cosé

is very large so in order to
satisfy the above equation, we require the argument of the sine function

to be very near zero.

|z| sin@ + (n+3)0 - w(n+1) =0 (384)
In this case
L 1
cosd 21| 2l n+ge\ z| cos @ 2n] 5] ™2 | z| cos (38¢)

Fn-o-’/z(z) * T + T(n + 72) ¥ I'(n+ %)

This formula applies along the complete track beyond point E for which

8 = 3w/2. Provided |z| << u, the following approximations are valid

c? [MrT ™ c®u,
P —r;u-;—> ] |z| cos @ andW = I z| sin 6 (38f,8)
t t b
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%’L + A6 and Eq. (384d) gives

ol = (- F) + (net) 00 (392)

Near point E, 6 =

so that

2. =|2|46 = ﬂ-£> A6 and ziz-lzl (35b,c)

Since 1z, = uwinwb/l w|? and 2, =H [1 -wrnwb/] w| 2], one can solve for w

and ws in terms of A8 to yield

N o _m\ A6 _ (om _ w4
""“”“’b[“(“z"'a) U 2 '4) /T"] (394)

e S S SR A VWA (39)
T2 Tk Z

Exactly at point E, A6 = 0 and

v,? 2 v,
“’r"‘mb[‘ -—01-(921 - I{)] s WyRT nwb<22£ - %) (39¢,8)

and Eq. (38e) reduces to

an nr T n+%
F‘m?z("&) = T(ovk) l}é— - Z:l (39n)
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Note that w, is slightly less than o, at point E. Slightly further
along the track at point F, wy, is exactly equal to nw, again. Solving

Eq. (394) for A6

. v
AB :(%E —I{)ﬁ- and 6 =22'L + %ﬂ'-%)'éc!' (391)

Beyond point H, the angle 6 is very nearly equal to 2w, say

6 =21 - A8. Eq. (384) shows that |z|a6

Y]

™ or z,=|z/sinf = - m
i

and z, = |z|cos 6= |z| =wn/A6. Since z, = pw W w|? and
- - 2 2 .
z, = u[wr@r nwb) + 1/10|® we can solve for ©. and w, in terms of
A6 to yield
Py (. 1)
w_ = i 48 and w, = (40a,b)

_umb 1
2 i T 2
(- ) -3 ]
A8 T A8

All the structure beyond point H showmn in Fig. 4a can be described in terms
of Eqs. (40a,b). However the validity of our analysis imposes the limits

that A8 > nm/u = nﬂvt'/cz. In this case, expanding Eqs. (40a,b) we get

v, %nr v, 2nmw
w, = 1+ m) and Wy = - W, —Ez—) (Z;_.Oc,d)

For the times of interest in Alouette data, wr’c ~ 10* so that .wit is minute

and cannot account Por the fime.a.ecay. Thus we see that w; is always

negligible even with respect to 10“nmb , but w, can differ fractionally

from mw, . Also solving to first order Eq. (40a) for A6 in terms of w.,, we

find that |z| =wn/A6 zu(wr-nwb)/wr which is the value for |z| to be inserted
in the following: »




£y () = 2rlal el Yo %) 0)

namely Eq. (38b) for 6 x 2m.

We can also investigate part of the track fo;‘ negative F g’
namely regions JK and LM in both of which |z| is large. Writing
z = |z eie, 7 $ 6 < 2r, Eqgs. (38a-c) apply. For region JK, 8 = 7 + pg

and substituting this into Eq. (38c) we find

1 Yp~ My
A6 = ~— e s, F=- where z = u(————-) (41a,b,c)
T'(n+3 | z| w., |

For region LM, we take 6 ~ 27 - AG, but instead of taking the argument of
the sine function equal to zero as before, we now equate it to - .

Instead of Eq. (38d), we have

| z| sin6 + (n+%)6 -wn =0 or |zla6 = (n+1)w (42a)

Equations (40a-d) apply here as well with (n+ 1)7 replacing nm. Also

| 2| zu (0. -rw )/w_ as before and

1
cos® 2nlz|"tZ |zlcosh n+s |z
Fouts(®) = S+ iy ol 20 oslom) o —anl o o) a22)

Note that Fn+% has the same form as in (40e) but is of opposite sign.
The above completes our investigation on the analytic continuation of the
F function. This function will be used in Part 2 +to obtain dispersion

curves of frequency versus wave number.
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VIITI. CORRECTION TERMS TO THE DIELECTRIC TENSOR ELEMENTS FROM HI.GHER A _POWERS

In certain cases in Part .,-we require higher order A terms
to the dielectric tensor elements. These terms will now be derived for

ko = O using Eq. (5b) and expanding e-AIn(A) to two higher order terms.

We have
eB1 () = A" 1-A A A (43a)
n —n!2n +42n+15 *2 &
-A I 2/  n+2 n
e (I;l- In) = o l:ng-A(1+n)+A <l+ —T + -2->] (4:3b)

Ne.

- n31 ' n~1 2 2
e A[: An+ ZA(In—In'):]-‘-'-g.zn [n‘-— A(2n+ n’)n+ A’<2+H%_—1-)- + 2n+-nz—>:l
(43c)

In the manipulations yielding Eq. (8) from (5b), we note that every extra
power of A raises the order of q in ‘;q (or Fq for k, = 0) by one. Thus

we obtain using Eq. (43a).

& 2 2
n_ ,n-1 1 1
(&1 ey = 0 N B W 05y ()|
(4ha)

P 1 1
(833 )W&I‘m =.~-H " “—"Znn' [Fn+5/a -\ Fn+7/3 + )\'an+9/1<1§.—(—-)‘11+1 + E)] (M#b)
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using Eq. (43b)

(-ieas )warm

2
0 2
= (4 - .y-R 0 ,n-1 _ A(14n)
= (ls‘z)warm =-HY o En+’/z Fn+5/2

n
nt

(Im +1+3 Fn+-%:l (hhe)

and using Eq. (43c)

warm

, .
w 2 2 2
- - n?_ ,n-1 .(_l nf o2

(ez2) = -p=r = A E? TR Fn+5/ 2+ 2n4 i+ )Fm_

(b2d)
The additional terms provide correction terms in the dispersion relations
in the relativistic case. In the nonrelativistic limit, they however

predict unrealistically, a completely new wave as is shown in part 2.

THE DIELECTRIC TENSOR FOR THE FUNDAMENTAL (n=1) CYCLOTRON FREQUENCY

For the fundamental frequency, the "cold terms" in Eq. (23a)
are incorrect. For the "cold terms", we allow only n = - 1 in €44,612 and

€33, keeping n = +1 for the "warm terms". Thus

/ m’%ﬁ maf:%‘y \
wz (5a

(ecold>aﬁ = “(w + oy ) 1 2w W+ W

To order A%, the warm terms are given by Egs. (44a-d) for k, = O. Thus

]
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w

(€14 ) garm = = § 27| Fsy = APy, + %AzF%:] (45b)
w 2

(SBJ)Warm = - % '(';g‘ F7/2 - AF% + ‘g A.ZF"/Z:\ ()+5C)

. . 1
(4600 )y = (02D = - [y, - 208 + Bimy | a50)
LY
(szz)warm = - % [F%' 37tF7/z+ S A F%:‘ (45e)

If we wish to include k, to first order we can use Eq. (23c)
with n = 1,

RELATION TO OTHER WORK

Trubnikov (1961), Drummond and Rosenbluth (1960, 1961),
Beard (1959), Beard and Baker (1961, 1962) and Bekefi et al (1961) have
all considered cyclotron radiation from a hot plasma. Their basis is
either the individual particle approach with perhaps some account for
the distribution fpnction or otherwise the full relativistic approach
(Eq. 1) without applying the expansion in terms of Bessel functions. The
values for the dielectric matrix elements are integrated either using a
computer or applying a saddle point method as first indicated by Trubnikov.
They also provide results as k, varies away from zero. However one basic
assumption of these workers is that k%c?/w? = 1 and w >> w, which
simplifies the analysis exceedingly. ZEssentially, they consider only the
electromagnetic extraordinary and ordinary waves near the light 1ine_rather

than investigating wave dispersion for the whole range of k values with
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A < 1 as we do in Part 2. The saddle point method is useful when vt/c is
not too small and cyclotron harmonic lines can overlap. In the very slightly
relativistic limit when the lines are distinct, the Bessel function
expansion is more appropriate.

Demidov and Frank-Kamenetskii (1964) have treated less
rigorously the same problem as Dnestrovskii et al (1964). Their results
disagree and it seems that Demidov's final function, equivalent to our

F function, is in error. On the other hand, the works of Rukhadze and

8ilin (1962) and Gershman (1961) conform in principle with our and

Dnestrovskii et al's results.

Many authors have treated the line shape and absorption effects
near cyclotron harmonics using nonrelativistic theory. (See for example,
Silin and Rukhadze (1961 pp. 144~7), Gershman (1960).) If k, is sufficiently
large that Eq. (9) is satisfied, these analyses are valid and the concept
of "cyclotron absorption" is meaningful. Our development here and in
Part 2 covers the range of lower k, values, after the transition from
"cyclotron absorption" to "relativistic absorption" has occurred.

We complete this report having shown that the relativistic
W=y g 22
analysis is necessary for > “ﬁp—‘ and especially in the region
(w-nwb)/b P vtz/c2 and k, < vtw/bz. The transition to the nonrelativistic

case has been clearly illustrated. The necessary dielectric tensor

elements have been derived with which we can investigate the dispersion

of waves near cyclotron harmonics.
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CAPTIONS FOR FIGURES

Fige 1: Graphs of the real and imaginary parts of Fn+3é(“6) forn =1,2,3

2 W = Nk
versus ud =.£L!<_ - .> when w is real. The dashed curves,

t
(u8)~', are the asymptotic limits for large ud and represent the

nonrelativistic functions replacing F.
Fig. 2a: Position of i¥z in the complex z plane initially,for the positive
F track when o 2 nw, .
2b: Position of ifh for the continued positive F track.
2c: Position of ivz initially, for the negative F track.
2d: Position of iVz for the continued negative F track.
Fig. 3a: The two tracks of real F in the complex z plane.
The positive F track runs from @ = - O through w = T, and
then turns to the lower sheet. The negative F track runs from
w = 0 on the lower sheet. Both tend towards the singularity of
the P function.
;3b: The same tracks in the complex iVz plane.
Fig.La: Schematic plot of the values of F versus real part of w for
complex w and real F., The rectangular cut indicates the region

where the analysis is valid.

Fig. 4b: Expanded view of region where analysis is valid.
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| THE DISPERSION OF WAVES IN CYCLOTRON
HARMONIC RESONANCE REGIONS WITH
APPLICATION TO THE ALOUETTE
I.P. Shkarofsky
RCA Vietor Co. Ltd.

Research Laboratories
Montreal, Canada

- ABSTRACT -

The dispersion of waves near electron cyclotron harmonics
is investigated including to first order, wave numbers parallel to
the magnetic field, The proper relativistic form for the dielectric
tensor elements is applied. Distinct different behaviours result
depending on whether the wave number or frequency is taken to be
complex. In the former case, the waves near the Appleton-Hartree
values are localized and a gap exists between them and the plasma
wave. In the latter case, no gap exists except as one tends to
zero wave number where the dispersion curve indicates a rapid rise
in frequgncy above the harmonie. Matching points of satellite
velocity to the wave group velocity are found for the extraordinary
and ordinary waves. The relativistic formulation is compared with

the nonrelativistic one and the differences are noted.
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I. INTRODUCTION

In this report we investigate the dispersion of plasma waves
near cyclotron harmonics applying relativistic analysis and comparing
the results with those found using nonrelativistic analysis. Whereas the
latter predicts for k, = O three waves (i.e. three values of real w for a
given real k;) near each cyclotron harmonic, the relativistic analysis
requires either complex k or complex w with totally different dispersion
curves very near n%)for the two cases. For complex k, and real w, it
will be shown that we stiil get the extraordinary, plasma and

1

ordinanﬂt;waves but‘with gaps in the k; spectrum, that is regions where .
one cann;f obtain a real w for a given complex k,. These gaps effeétively
separate the Appleton-Hartree and electrostatic plasme waves. On the
other hand, for complex o and real k,, we can cover the complete k,
spectrum except for a very tiny region near k, = 0. Furthermore, there
are now only two waves (the ordinary and a combined extraordinary-plasma
wave) instead of three. These results are in essence the original
contributions in this report on the subject of dispersion of cyclotron
harmonics.

Dnestrovskii and Kostomarov (1961, 1962) have computed for
ky = 0 the disperéion curves from the nonrelativistic analysis. In this
report we give analytical results for values of k, < vt/wb and show how
the three waves are derived. For the electrostatic modes, we investigate
more fully larger values of k, and determine the points where the group
velocity is a maximum and where it is zero. Plots are given of group

velocity versus k,.



In order to apply the above results to Alouette cyclotron
harmonic data (Lockwood, 1963), we have to include the motion of the
satellite, If the transmitter were stationary, the longest lasting
response is derived from "stationary waves", i.e. those with zero
group velocity. Since the satellite is moving, however, the longest
response comes from waves méving at the satellite velocity. We shall
prove that such a match can be accomplished both parallel and perpen-
dicular to magnetic field lines. We need exceedingly small values
of ky. The value of k, can be either of the order of the free space
.wave number or an order of magnitude less than the free space wave
number. The Dopﬁler shift in frequency is always very small. Further-
more, the small value of k, necessitates a relativistic approachl(see
Part 1). Other possibly matching points as well as zero group velocity
points will also be pointed out for both the relativistic and
nonrelativistic analyses. In particular, it will be shown that it is
very difficult to match for harmonics greater than the fourth,
velocities perpendicular to magnetic field lines using the electrostatic

modes.




II. THE DISPERSION EQUATION FOR A < 1 AND k,,zc“/vtzwz <1

(a) Basic Relations

We shall de}ive the dispersion relation for very small k,,

and moderately small k, given by

A= klzvtz/bbz <1 and k,,zc‘/'vtawz <1 (1a,b)

where k,, k, are wave number perpendicglar and parallel to magnetic
field lines, w, = |eB/m |, v, = kT/m, and e, m, B, ¢, w, ¥ and T
have their usual significance. The analysis will use the relativistic
dielectric tensor elements expanded to first order in A and k,%. We
shall point out in Secs. IIT and V the corresponding nonrelativistic

results and the substitutions required to obtain them.




The dispersion relation for waves in a plasma is

k?c? 5 c?
- St kg e | = 0 (22)

We write €ap = (eaﬁ)cold + (eaﬁ)warm’ which are respectively the cold

Appleton-Hartree dielectric tensor elements and the "warm®" elements

associated with a particular cyclotron harmonic. Thus

kzz
- Sup * k &gt (aap)cold * (eap)warm

i
o

(2v)

We now insert the dielectric tensor elements given by Egs. (23b)
and (23e) of Part 1 of this collection. The determinent D to be

evaluated is with k, along the x sxis and k, and B along the z axisl

0=D =

K,_—k,%ﬁ-;—kf(n’1),%§p(p+pkﬁ) {K 21,207 & —z-P(p+Bk ):] k k,,—z-< 1-qr2(n- 1)° n>

O S

k2c?
2 . 4 2(n-1 1© 2
k;k.,"?( -Qk (n 1)0 > lk;knz,c'r Qk;.(n )77 K"—-'Z"z— - kfn .:;_{ P! (P'...[s: k;‘;

(3)




w?,v w 2w v 2 w 2 ,v,\2n
1
P=;2=('zrt'> — ; Qﬁ?(ﬁ) — P'=;2=(ﬁ> =
t b nt2 Dt b ni2 t b ni2
(4d,e,f)
c* .
p = Fm%(ﬂs) ; B =2V 2 (Fn+%f 2Fn+;/z +Fn+s/‘,) 3 n=F = Foe (hg,h,i)
t
4 2 W =L,
' _ . - c - . _L__ . — b
p = Fn+% i P '5;%07 (Fn+’/z 2Fn+%+ Fn+"/g)’ “";r? 3 8= W
(li'j"_kslym)

Mso w_=Vn e°/eom is the plasma frequency, k? =k,2+k,%, n_ is electron
P e P q ’ 1 s Dy

density and n is the order of the cyclotron harmonic (n£1). The function

P, is defined by

) < eitht
P (2) ifo———-—“_it)q , (4n)

and was investigated at length in Part 1.

(b) The Extraordinary and Plasma Modes

Let us restrict ourselves at present to the extraordinary and
plasma waves; later we consider the ordinary wave. Since the ordinary wave
is associated with the 33 element of the determinant, for the other waves
the warm part of this element is of higher order in A and can be
neglected. That is we approximate the 33 element by (Kq - k,%c?/w?). Now
let us expand the determinant by using the subdeterminants of the 33, 32
a.nd 31 elements and dividing the result by the 33 element. We obtain after

some grouping



k?c?
k3c? & 2(n- 1)c 2
- K - B o ey = 2k P(p+Bk,?)
3 2(n-1)\?
212 06 an.L 2(!1-1 ) \ . o 8 (anj. )
Zk,gk" ws » k 2 cz = 2k,|_ ky wﬂ 2
£ S ’ 2 C
s ek 5 |

k,4c* k, %k, 2c* kie? k2 o(net) o2 of 4

n-1 c

e [k D s i 8]
w[:Kn"'T

(5a)

The sbove form is useful only for small k. A somewhat
different grouping yields the following dispe rsi‘on‘ equation, useful for

larger k values.

i 2 2 2 2
> = (5 (ko555

k,*c? (n-2) 2 K _lig'
L 2(n-2 k2?\ kZ? [ L7y

- -—"d'z— K.I.+ Zk"_ P(p+ﬁk ) K +K —"'2""> -':)'2— 1= —1_(;_2?31-
Kn" (4)!

2(n-2) -
kfcz 2 2.2 Qﬂk 2. 2 e IR | L
2(n~ 2k C . 2
; ; (—z—> E‘ ©2) ppapi?) » 255 — e Q«:ﬁxx- E-g-) 5 SN

"’ gES

2 )kLZ (n-2)

k 202 P(P+pk"
+

w k,“c*
s

(5b)




An order of magnitude comparison of the terms involving Q with

the product term PBk,? shows that all the Q terms are negligible for the

ranges of k, and k;, of interest. In particular, the Q term within the

x® bracket (where x = k,2¢?/w?) is negligible with respect to the PBk,?

within the x bracket. Furthermore both the second and third terms are

negligible compared to the first within the x* bracket. Thus Eq. (5b)

simplifies to

@

X, - kn:ca><Kr _ knzcz)

+ % [Pk;z(n'z)(mﬁk"z)] =0

wz 2

mhere X) =K, + K, = “Wﬂ’_ﬁ ; Kr=K~'--Kx=1-W

2.2
k; c

2
w
‘K.L=(K1+Kr)/2 = 1-152—»'-‘.‘%)!7 and x = =

The quadratic equation (6) in x can be solved when

Pk‘z(n-Z)(P+ﬁk"z) << 1. The smaller x solution is

(6)

(72,b)

(7c,d)

(8a)



which is the extraordinary  electromagnetic mode. The larger x

solution is

k2c?

x = [c ko o” <1 . K‘"zi';z)]/[kf(“’zv)9<9+akﬁ)] (8v)
K, -

.__wz_

which is the mode for large wave numbers. If we consider real w and

complex k, or x, then p lies within bounds of order one in magnitude

2(n-2) is always less than ome for A < 1, we see

(see Part 1). Since Pk,
) 2(n-2)

thatvthefabove'condition‘on Pk,

the solution of Eq. (6) can never deviate much from the cold em mode or

p << 1 is satisfied. As a result

large wave»numberfmode. One cannot propagate a wave for k;, values
between these two modes;

The situation for real k, or x and complex w is different.
As shown in Part 1, the F function or p can be continued into the lower
half plane and can attain huge values. In fact the product Pklz(n-z)p
can easily become of order one. Under these conditions one can obtain
solutions of Eq. (6) for any value of x.

In particular let us look at the solution for x < 1. Then

either Eq. (6) or (5a) yields

x k,%c? k,2c? 2(n-1) ¢2
D = (ﬁ-g-—k){xr-—z-z—-%‘- 2k, ( )‘51- P(p+Bky2)
k,*ct e A
- - AL LK_'_-—w-zi] =0 (9a)




In particular for x << 1 and k,?c?/w? << 1, we have

D =<K1"§c'£"ﬁ' {Kr 2, 201 & p(papic,2) - —H—--}= 0 (%)

This is the simple form the determinant attains as k -+ 0. Since the first
factor is non-gero, the dispersion relation is approximately
2(n 1)c

-2 P(p+fl,?) = (9¢)

In the analysis above, we took k, alo.ng the x axis. To evaluate
the Green's function we have to obtain the ratio of the subdeterminants to
the determinant including the ¢ angle associated with a general k, in the
x-y plane. (In the evaluation of the determinant itself, the kx2 and kyz
wave numbers combine to give k,_z independant of ¢, which accounts for the
reason why we were able to restrict the k, direction.) For the situation
A < 1 that we have considered above, the modifications are very simple.
Essentially all sin ¢ or cos¢ terms which appear in the warm terms are
either multiplied by higher power of A or by the Q term which is
neglected in any case., Thus we only have to consider ¢ terms in the kakﬁ
part of Eq. (2b). With this modification, the 11 subdeterminant — after

dividing by the 33 element as we did for Eq. (52) — is

2,2 x,%c? k,%k,2c* sin®¢
Rip= K, K8 L 2o costso 1, 20072 pioupr,?) - - (100)
1

w? Ky =—7r
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where kx =k, cos¢ and ky = k, sin¢. The last term is negligible

compared to the PBk,? term. Similarly the 12 subdeterminant is

k,2c? k,%k,2c*sin¢ cos¢
. 2(n-1) ¢? - s :
| v [K..- L

(10b)
The subdeterminants R4 and Ry, are the relevant Green's function
parameters for excitation by a source of current flow in the xy plane.
Let us average the ratio Raﬁ/D over ¢, assuming that the only
¢ dependence is that shown in Rap(a.nd neglecting any ¢ dependence associated

with satellite motion). Using the relations:

2ndo( 2)
J (2)+J (2)
= ° 2 (1)

J (2)-J (2)
0 2

0

where J is a Beseel function, we find for Rij75 = /e-kLrGOSQbRij/D d¢

-

. 2 2 klzcz » 2 ' _chz

Res = E(‘_&“L’QL - =7 - kLZ(n >§? Pp+ Bk,,“ﬂ o (k,x ) - =z Ja(kyr)
(12a)

and

— - 2

Riz = iE{x«» kf(“ 1) ﬁz P(P+ﬁk..z):| Jo (k,r) (12b)

where r is the distance of the detector or receiver from the transmitter,




-1 =

For satellites detecting their own transmitted signals, r is the distance
travelled by the satellite,r = Vt where V is its velocity and t is the
time after transmission. For the case k, r= k,Vt<< 1 or for times

t<< (k,V)™', we can neglect J2(k,r) and approximate Jo(k,r) by one.
Usually this condition is satisfied for x = k,%c®/w® < 1. Note that in

this situation we also have

— k,2c? -1)¢?

Ry v Wz = K-S - X 2078 popicz)  (130)
and

— K, 2c?

Ry1 - iRy 2 =K1-"(‘o"2'9"'22£' (13b)

Using Eq. (9b) we find that for x << 1,

2 -1
Ri1 + iRs2/D =[K1"]—2:'E";g:] (14a)

which has no warm term in it and hence is of no interest for cyclotron

ha.rmonics. We also find

Ri 2" iR4 2/D R E(r = 2k_|,2(n-1 )-;'; P(P“'an)] - (1&1))

which has interesting cyclotron harmonic parameters. (Compare Egs. (14b)
and (9¢).) The above two equations also indicate that as x » O or k » O,
the cyclotron harmonic wave becomes circularly polarized since only the

Ryy = iRy2 part has to be considered. This part is also most important if

a circular wave in the Xy plane is excited by the source current.
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(¢) The Ordinary Wave

Besides the extraordinary-plasma wave mode, there is another
wave associated with the 33 element of Eq. (3), namely the ordinary wave.
To obtain the dispersion relation for this ordinary wave including first
order k, terms, we expand D and divide this time by X, where X denotes
the following combination of elements [(11)(22) - (12)(21)], viz

kAc?

202 "
- 2k, 2(n-1) P(p+ﬁk2_2] T

k,

X k. -k 202 k,®c? k,2c?

= K-S - ((Fy T e
(15a)

To obtain any noticeable deviation from the "cold ordinary wave"

K, - k,2¢2/w?® =0, we require k, 2n c?P'p'/w® to be of order one. In this

case we not;};.e that the k, 2(n- 1) c?

—» Pp terms are much greater than one by
]
order A"', so that in X, we can neglect K. k?c?/w?, etc. with respect

to the warm term.

2,2 k c? _1\a2 2,2 k‘chz
x = - 2, 20N po i Rt e B ”—j—:PpE«’-l--liﬁ,-‘é---—z-p—]

(15b)
Similarly in evaluating D, we keep only products of warm terms, viz
PQ, Q2 and PQ®. The PQ® and PQ terms cancel. The determinant thus becomes

the following, after division by X and then inserting Eq. (15b).

k Zcz k 202
_ L 2n ¢ 2[ . c* 2(n-1) k,2¢c® "1
D =Ky =—z -k, "-zP'(P + 'k, )-_Xl}nz;-"klk"kl K ===

k,2c?
L 2n ¢? 2 9 772 47
=y P'p'- nk,,2 —g P!t — < (16a)

“J

]
=
!
I
~
P
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Now from Eqs. (4f,g,i,k) we have

2
9%n%c*t  Yp /Tt n ct 2(Frw'"/ -Fn+5/ y
Q3 . = —Ez- i | c— - - L2 2
P'p Ppw v, (wb> n1ot 2*s1rt!au2 {an+% 6Fn+'7; 3Fn+5/2 Fn+:7 }
L] z

(“) = . {7Fn+ AR 2F2n+%/Fn+%}

s- Pvpn ,

04

where p" = 53 7o? {71"113/2 BT AR 7 / Fn+3/z} (160)

The dispersion eq. for the ordinary wave is thus

k 202 2
4 2n
= K"..__a.).!- - k.l. %2. P'(p'+ﬁ"k"2) (160)

The subdeterminant of the 33 element, Rss, after division by X
and approximating as in Eq. (15b) is simply unity, (even including ¢ terms

in kakﬁ)' Hence

klzcz 2 -1 ——
%}' =| Ky === kLG Srp'(p'4pk,?)| ana B2 - Baig ok r) xRy,
W w : D D i )

(164)
if kLr<<1. This ratio is relevant for the Green's function if excitation

is caused by a current source in the z -direction.
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III. THE DISPERSION EQUATION FCR k, = O AND A < 1

In this section, bb restricting ourselves to k, = 0, we can
{

investigate more fully the higher powers of A neglected previously.
Using the proper relativistic approach, we find the additional terms
negligible except when 2K1 = x. If, however, we incorrectly insert the
nonrelativistic limits into the relations in the region where they are
not applicable viz., where ud < 1, a new wave results. This wave has
appeared in calculations of cyclotron harmonics upon ad hoc application
of nonrelativistic analysis (e.g. Dnestrovskii and Kostomarov 1962 —
see Sec. V for a full discussionk

For k, = 0, the dispersion equation (2a) for the extraordinary

and plasma waves reduces to

811(822 - X) - E42E2¢ = 0 with x = kzcz/wz, k=k

(17a)
Inserting the cold elements given in Eq. (23b) and the warm elements

given in Eq. (44) of Part 1, we find
2(n-2), A2 n+2
KlK - xK, 2x.K1k [ v 0 Fn+ (14n) + m Fn+7/ m+ 1+ >:\

o(n-2)o .2, _(24n 2.2(n-2) 1 1\]
k PXA'K, n®{n+1 Fn+%+ x“k P Fn+%_wn+52+7an+7/z L(n+1 * 2/

4(n-2) PPx2A% n+2\ _ q2 _
+k e RV A YA vy F n+h |- 0 (17)
where K,, K, K,, P are defined in Egs. (4) and (7) and where A::kzvtz/bbz
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If higher powers in A are neglected in (17b), we simply obtain

) 2(n-2) 2(n-2) )
K,K. - ®K, - 2xKk PFn+3é4-x2k PFn*ae =0 (18a)
or
2(n-2) ' (2K - x)x bzznn! 1 (2K, - x)x
k PR )RR -xx -2 2:\1' " XK -Kx (18b)
5y 1% K ;A n “n+%e A
Since 12(0-2)

P is extremely small, Fn+3/2 has to be large for x to deviate
away from the electromagnetic mode (KlKr"‘”'K:.x) or the electroétatic mode
(x>>1). For large F all x values are possible except when x-» 2K1 for
which we might seem to require F- w. This however is not necessary since
we then include the higher powers of A given in Eq. (17b). In fact, when
b 2K1’ Eq. (17b) gives the following equation that the F's have to

satisfy.

42 ax2(em2)p f o2, {1 . x2(n-2) ;\Tp[Fn#/2 Faelpp (n+2>_Fn+%:B (19)

Fn+% n+1

Thus a higher order of magnitude of F is required, (Akz(n'z)P)" instead
of (kz(n-Z)P)_1 . Equation (17) also shows that the only case we need
these higher A valuesfor A< 1 is near x = 2K1.

We also note that for n 2> 2

w ? w ?
I&l‘)=1 -m%w:y H K‘.=1-(-01—:P;: (20a)

whereas for n = 1, we use Eq. (45a) of Part 1 to find equivalently that
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so that
w 2 K +1
K1=1"ww+wb » K.=1, K, =3 (20b)
2
2 v 2K, -x
W t 1 1
and Eq. (18b) becomes wpz =2 2 = 2Kl-(K1*-1)x (20c¢)

Real w, Complex k Curves

We can now plot w-k dispersion curves based on the above
analysis. First we consider the case of real w, complex Fq and hence
complex k. Then we investigate the case of greater concern to us,
namely real Fq, real k and complex w.

When w is real, the complex function Fq is plotted in Fig. 1
of Part 1. We note that both the real and imaginary parts of Fq lie

within bounds of order one. As a result k2(n-2)

P Fq is an extremely
small number for n> 2. Noting that K;=:(K1*'Kr)/2’ we can readily

solve the quadratic equation (18a) to yield under these conditions:

K
_ KA. _1.2(n-2) 5
X = __-K.L <1 k P Fn+3/2 —ZK; > (218.)
K, KK K,

+ 2K

and - o
1 K, k2(n—2)P F
n+

X = - (21b)
2(n=2)p g
n+

72 72

The first solution in Eq. (21a) only exists if KlKr/K; is

positive and then it represents the Appleton-Hartree equation (extraordinary mode)
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k%e?/w? = x = K'J.Kr/K-l- with a small correction term (for n> 2).

For n = 2, the correction is noticeable. (The n = 1 case is investigated
separately later.) The slope dw/9k at w = nw, is altered negligibly by
the warm terms for n > 3. To see this, let us evaluate 0k/dw= (dw/0k)™'.

Note that F is real for w > mw, and at w=w,_, using Eq. (31a) of Part 1,

b b
we have
P, et Zmyd) =F_3-F 4/ = 7=t
__ n+e T nts d(us) T o oY T 0¥ -Vi
(22a,b)
sz 3 7370
%z _ 2 ,oo(us) _ b
and d(us)z = (—n!_ 1/4)(1’1-3/27 H dw = —1—0) (220,d)

From Eq. (21a), one finds that (8k/dw)/(k/w) involves terms of order c;,
a constant, and a terms of order (v‘t_‘z’/c2 )n-jc“ This latter term comes
from the derivative of Fn+’/2‘ One sees that for n= 3, aw/al;(w/k)z cy

with the warm terms contributing about the same as the cold terms,

whereas for n> 3, dw/0k/(w/k) = ¢y again but the warm terms give negligible
correction. For n = 2, the warm term is larger by cz/vtz and therefore the

dominant term. In fact forn = 2

dw/dk
w/k

w

K, v.w 2

thb

=15<m) (22e)
1" "p

=a).b

Hence the slope is very minute at this point, changing greatly as w

recedes from w, . One also notes from (21a) that for w > o, , X< K'].KI/K-'-

since F > O whereas for w<< o, , F is more or less real and negative so that
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x> KlKr/K-L (see Pig. 1 of Part 1). Hence the dispersion curve has a
"wiggle" around nwy . This wiggle is large only for n = 2 and negligible
for n > 3. See Figs. 1a and 1b where this behaviour is illustrated.
The dashed part indicates the region where k is complex.

For n = 1 we use Eq. (20c) and note that since F% is of

order one, x is localized around ZKl. In fact

i (23)
The warm term provides a negligible correction (see Fig. 1¢). This
solution exists only if Kl> 0.

We now investigate the other branch of the dispersion curve
associated with the solution in Eq. (21b). This solution occurs for
large values of x when n> 2 but even for n = 2, it is separated completely
from the em waves. When n = 1, Eq. (20c) shows that no extra solutions
exist for x >> 1 so that this effect or mode does not exist. Equation (21v)

can be written in any one of the following ways (using Eq. (4d4) for P).

2(n=1) _ ('u >n -1 <m, >2‘:‘, : wzw_b:,bz:l ;:;:3'/2 (24a)

2 1
n-1 w,? 2 2 n-1)
K2 _<E>n 1oy {(‘“b _ “p 2) 2"ntw? }n ! (23)
= 2 z z 2 ‘
c vy wp w* -ay Fm;/ (nwb)

n-2 . 1

—r 2 2 —
Ko? [ n-1 wy Wy ) W, 2nn 12 (n-1)
w? T\, TR AR Foe3, (awy )®
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We thus see that ksz-1/(n—1 ). Using the plot of complex F versus pué in
Fig. 1 of Part 1‘-, we present here in Fig. 2a, a polar plot of Freal
versus Fimag’ i.. Fig. 2b, Fr'1 versus Fi" and in Fig. 2¢, F _1/(11_1).
The latter can be used to give the variation of kr2 versus pud when

K,> 0 or sz/wpz > wbz/(w2 -waz). See Fig. 3a. In the opposite
situation when K, < 0 or wbz/wp2 < wba/(w"’ -wbz), we present in Fig. 24,
2e, 2f plots involving (-F) similar %o Figs 2a-2c. The dispersion curve
is shown in Fig. 3b.

The dashed portions of the curve are the regions where k is
quite complex. Figs. 3a and 3b show a minimum k or A value below which
the dispersion relation cannot be satisfied. This minimum value is much
larger than the k values associated with the extraordinary em ;no'de. '

In Figs. 4a to 44, we show tozether the em and es modes for the

L possible situations, namely
(1) K,>0, K,>0, K;>0 (ii) K;<0, K.<0, K, <0

(i11) K> 0; K< 0, K,>0  (iv) K> 0, K_<0, K, < O.

~ Let 'us now evaluate the group velocity of the es mode when
Ky > 0 at the point @ = mo, . Write k equal to F"fz““l )]times a factor which
is more or less constant with respect to w. That is, we assume that the

crutial variation in w is due to F. Using Eqs. (22a-d), we find using

dk/ow = 1/(3w/ok)

V2

= 2(n-1)(n-}) - (252)
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Also since 32k/dw? = - 32w/8k%/(dw/0k)>, we can evaluate the

next derivative to obtain

9%w/0k?
w/k

W=

- IRAY- R4
=5n7:-;)_-§7:-5ﬁ- = (25b)

These relations indicate that the slope and curvature of the
es mode are very smell, The slope only becomes large in the immediate
vicinity of the turn around point where k is quite complex.

We also note that the nonrelativistic limit for F is

F=u :vta/Ezz(w-mJb)] = 2w? v‘tﬁc2 (wz-nzwbz_)] (262)

The latter expression includes -w values as well. Equation (26a)
applies outside of the relativistic range at both ends of the em
solution, but only when K,> 0 and w> nwy for the es-solution. In the

latter case, one can write using Eq. (24a)

2_,2,2 . _ 2 2 2 _ -1
w? - nfud, vk \2(n=1) N ; b Wy (26v)
w® “\w w n w> | Wi -
o / 2Pt L %p b

which is the usual relation quoted for the Bernstein (1958) es mode when

A<< 1. Essentially Eq. (26b) is equivalent to €44 = 0. If we wish to
include higher values of A, we substitute e.AIn(A) for A”/2"nt (see Eq. 20

of Part 1) where A = (k vt/wb)z. Equation (26b) becomes

2
»Y w
w? -nzwb" = 2wp2n21n()\)e /< -;2—_-31—)-;))\ (26c)
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Besides the extraordinary wave, of great importance is the ordinary
wave, When k, =0, its dispersion relation is simply

2
w n
b 2 n! _ p.4

w < .n=1 - w
PAFLE, (-—{ﬁ-)-x

where A = k"’vtz/a)b2 and x = k®c?/w?. Because of the bound character

€33 = 0 or

(27a)

of F for real w, a solution exists only when w?:> wpz, i,e. when the
denomenator on the right-hand side is near zero. When n> 1 (including
= 2), one can readily show (see Fig. 4e) that a wiggle occurs in the
dispersion curve similar to that for the extraordinary wave and that the
deviation of k from the x = 1 - wpz/wz curve is very small.
When n = 1, the wiggle is quite large. Neglecting higher order

A terms (viz AFg/ << 1), Eq. (27a) is valid for n = 1 also and reduces to
: 2

[1 - -%-]/[1 + F’/:] (270)

In particular at v = &, Fy = 2/5 and

x = [1 - wPZ/wbz:VE + "’pz/5‘"b2] (27¢)

Equation (27c) has been derived by Dnestrovskii et al (1964) and Gershmean
(1961). If we keep higher order A terms, we find using Eq. (44b) of

Part 1 and Eq. (20b) that

le:f-'ﬁ,—- Fg/:l - x|:1 + F7/:l <1 - > =0 (27d)
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Real k, Complex w Dispersion Curves

In contrast to the real w situation, a slightly complex
frequency permits dispersion for all k values except a tiny region near
k = 0. The reason for this is that F becomes very large for complex w
(see Fig. L4b of Part f) and the k variation in Egs. (18b), (24c) and
(272) is unlimited. The dispersion in the regions where the nonrelativistic
analysis is valid is identical to the real w case. As pointed out
previously these regions occur when |u8|>>1 at both ends of the em
solution and when w> nw, and K, > O for the es solution.

Let us considef L possible situations for the dispersion curves
illustrated in Figs. 52 to 5d.

For the high-frequency ca;e in Fig. 5a, Kl’ Kr and K, are

positive and Kl> Kr or nwy > Wp > 6n> W where Wps W

b "R L L
values for which Kr = 0, Kl = 0 and K, = O respectively:

anday

1

Tarethew

2

) 1 2 1 1

w 3 w. z 3
ee (22 p =i (2w g (w2

=T 2 *(4 +“’p> ; "’R‘z“(wﬂ“’p)’”T <“’p *“’b> |

The solution for the combined extraordinary-plasma wave is that given in
(18b) with the correction in (19) when x » 2K,. We also require the
plot of F versus @ oeal given in Fig. 4b of Part.- 1, We can follow the
Bernstein es mode from large to small A up to w = nuy using real w, real k
and the real positive branch of F. As k further decreases, we continue
using Eq. (24c) along this positive branch, passing through a minimum

© < nw,  value when ak/awr = o Or aF/awr = o in Fig. 4b of Part 1. Then
the curve passes again through w_=nw (see Eq.(39i)of Part 1). The

frequency rises steadily above nw,  as k decreases and x » 2K1 since F
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appears to be infinite at this point according to Eq. (18b). Fowever
Eq. (19) limits the maximum values that P -nd w attain. Essentially
around x = 2K1, coupling occurs between the F > 0 and F < 0O branches
which accounts for the awkward behaviour. For values of x< 21(1, we
therefore shift to the F< 0 track and the dispersion curve connects with
the em wave when w<< W, . On the opposite side of the Appleton-Hartree
solution, we again use the F> 0 track., We follpw the same behaviour as
for the es mode, with w decreasing slightly below nw, and rising again.

The most remarkable result is that near k = 0, F becomes larger and

larger resulting in w increasing more and more above mw. rather than

b

tending to nw, o As w increases above Ty by an appreciable fraction
of nw, , over analysis which restricts w to be near nw, fails. A full
investigation of what acfually happens then, is beyozid the scope of this
work and is actually not necessary for further analysis,

The low-frequency case, shown in Fig, 5b, is for K1< 0, K:;< 0

K, < 0 and IKrl > |Kl] or my <wy <wn<wp. Equation (18b) becomes

<“wb22nn! 4 (2| Kll +X) X
- -2 2> F =
pzAn n n+%, lK1Kr|+lKLIX

For large k values, we must choose the F< 0 track and, since no
Appleton~Hartree solution exists, we follow this track for all lower k
values as shown in Fig. 5b.

The high-intermediate-frequency sit uation in Fig. 5¢c is for
K,>0, Kr< 0, K,>0 with K1 >|Kr| Or Wy < Wm< 1w, <Wp. In this case,

(18b) is




(wwbzznnz 1 (1 -x)x
pzxn'2n2> Tn¥e KK |+K, x

For large k, we must use the F> O track which can be followed for lower
k values up to x  2K;. At x = 2K,, we apply the correction in Eq. (19).
For x< 2K, we change to the F< 0 track and continue for all lower k
values.

When K, > 0, K.< 0, K, < 0 with |Kr|> KJ«,\ Or Wy < MWy < W< Wp,
(the low-intermediate-frequency situation) the Appleton-Hartree solution
x = KlKr/K-!- oceurs at a higher x value than x = 2K;. This case is

illustrated in Fig. 5d, and for it Eq. (18b) becomes

’_ (wazznn: > _ ] (2K, ~x)x

2 022 ) Frpa IR K |-, |x

For large k values we require the F< O track which connects to the
Appleton-Hartree solution as shown in Fig. 5d. Between x:KlK I/K_L and
x = 2K1, we use the F> O track andfor x<2K1we use the F< 0 track,

In all four cases, the large-k portions of the curve make a
smooth transition to the appropriate well known electrostatic cyclo.tron
harmonic mode (sometimes called a Bernstein mode).

The above formulation applies to n = 2 as well except that the
excursion from the Appleton-Hartree solution occurs for larger values of

W = and it connects up sooner with the es mode.
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For n = 1, u, has a negligible effect. Equation (20c) shows that
for a large excursion from the Appleton-Hartree solution, Fs/2 must become
exceedingly small (rather than large as for n>1). Since F c;annot go to
zero before going to w (see Fig. 4a of Part 1), the dispersion curve for

complex @ is about the same as for real w(see Fig. 1c) and only exists if K.> O.

1

Figures 6a and 6b show corresponding curves for the ordinary
wave when w % wy respectively. Equation (272) (valid for n = 1 also) shows
thatv if w> W, one neeé.s F< 0 for large x values, x> (1 -wpz/wz), and F> 0
for x< (1 -wpz/wz). If w<w, one cen follow the F< 0 track for all k
values. Compare Figs. 6a and 6b with Le.

At this stage, it is informative to look at w versus k plots
including several llarmonics'on each plot for ratios of wpz/wb"’ ranging from
one to 12. The ratio of wp/wb is plotted in Fig. 7(for the equatorial
regic;n, daytime and sunspot minimum) versus ionospheric altitudes of
500 - 30,000 kms using tlie data in Table I. We note that wp/wb varies
between one and ten. This ratio is also equal to rb/ll)’ the electron
Larmor radius to Debye length. In the polar regiqns, wp/wb may be smaller
(as low as %) than for the equatorial regions. In Fig. 8 to 15, the
dispersion curves are shown schematically for the ordinary wave or for
the combined extraordinary-plasma waves. These plots are obtained by
making use of our previous results in Figs. 5 and 6.

Of interest is to note in Figs, 8 to 15 or 5 and 6, the points
wheré dw/d%k can match the satellite velocity. Such points exist on
either side of the x = K]_,KI/K.L or x = K,, dispersion curves provided these
electromagnetic waves can propagate. Another point for mateching which

always seems to occur (except for w = Wy with the
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TABLE I
7] W
_i_z_m_P_)Qg in ciauss inch Y%
56.5 262 .62 12.2
35.8 2L L. 30 8.3k
25.2 .232 %.07 6.2
17.9 «222 3.90 Le6
1.3 .208 3.65 341
7.8 .190 3.35 2.3
6.1 176 3.09 1.97
5.0 162 2.85 1.75
43 148 2.60 1.65
3.7 136 2.40 1,54
2.88 .1125 1.98 1.45
2.6 .0965 1.70 1455
2.28 .0738 1.30 1.7
1.98 0563 0.99 2.0
1.58 .0335 0.59 2.68
1.19 .0188 0.33 3.62
0.81 .008L6 0.149 5.4
0.577 00448 0.079 7.3
0.338 .00173 0.030k 11,2
0.232 .00084 0.0148 15.7

0.176 .000466 0.0082 21.5
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extraordinary wave) is near k = O where the dispersion curve rises above
nwb.‘ In the next section, we turn to this problem of matching satellite
to group velocity. 1In fact, we associate the long duration cyclotron
harmonic signals with waves travelling at the satellite velocity. Such
points occur both for the extraordinary and ordinary waves,

MATCHING SATELLITE VELOCITY TO GROUP VELOCITY

(a) Matching k,,

All the above dispersion relations are in a stationary frame of
reference. Since the satellite is moving; the actual w and k values
within the plasma are shif'ted from that of a stationary transmitter. The
shifted values (w',k') can be obtained by a Lorentz transformation with

the result (see for example Silin and Rukhadze, 1961, p. 174):

o' = (w-£;z)/m71‘1-v S (28a)

X' =k + ks V(1 =-V1I=VZ/c?) - wV?/c?

v
K+ —=—|k.v ] (28v)
- VAT -V /c3

where primes refer to a moving frame of reference and where V is the
—

satellite velocity vector and V its magnitude. For ¢ >> V

Js kX
Jz&—;z(--ﬁ—) and w' =w - k. V (28c,d)
Hence k=k + V(' +Xk'.V/2)/c? (28e)

Let us first attempt to match satellite velocity to group
velocity in the direction parallel to magnetic field. An examination of

Eq. (5a) reveals that the most rapid variations of w and k,
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arise from the p+pk,? term (or p'+p"k,? for the ordinary wave).
Diffeicentiating this and setting dw/dk, = V., one gets to first order

V.0p/dw + 28k, = 0 or

F' 5
V, p! wV n+
ky = = = - =z v (293')
2w ﬁ c I“'n",.s/2

. _ _ - .
since p = Fn+3/2 and Fn+% 2Fn+3/2 +F o 1, = F n+% for the extraordinary
wave. (A prime denotes a derivative with respect to pd.) Similarly for

the ordinary wave we find from Eq. (16c)

wV, F! n+5/z

c
2
[7Fn+5/z_8Fn+3/z +3 Fn+'/z - 2Fn+%/ Fn+3/z]

ky = -

t
F n+5/z Fn-i-:/L

= - %‘;u - (29b)
[3 m% Tne¥,” 2 <F£+5/2> ]
Inserting the value of k, (Eq. 29a) into Bk,? yields
2
( 'n+3/z>
pkuz = (V,,Z/ZVtz) - (30)

F e
which is very small compared to p = Fm_% since V,,/vt~ 1/16. This
substantiates our use in Sec. 2 of first order k,," terms and treating
Bky? as a small correction to p.

In order to provide a more convincing argument valid for a wider

range of k, values, we apply the generalization of p+ Bk, 2, namely the
n k,c
b ”

function, ?q(——a-;—, - ) discussed in Part 1. The most rapid variation of

the dispersion relationship with k, occurs in the :% function. We therefore

/
solve for the value of ¥, such that a}q/ak,, = 0. We have in the transformed
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frame of reference using Eq. (7) of Part 1

?<— Eﬁ) j.dt[(“lt)z <' -g;(w'+i.é.}.’.>>2 w'+t;c2y jj-q/2

" Vo, 0 v\ p2.2 — % pintw
- 4 4 ko! t¢ _ b
A exp{“ “[“ it)° Q‘ z?(“* 3)) WD | T TV EY

s . i . / . .
Differentiating with respect to X, and neglecting V,%/c? with respect to

one

3 dtexp {e. ..} / (wlfk,V')tz 2
‘s k¥ 1
% = [ T (e e

[o...J +1

+wbuj-dtexp{.... (walé ﬂ]

[.] -

atexp {eeed =, V., ¢.y (o'+ K.V, )t%c?
+ 1“‘[ |:k"+?<u+ 2 >:‘ (w+X.V)>

[

vnmbu i (w’+k Vl)c +3
= 'tmk’:yj oud [k"*"’< > (*EV)a” “_( 5’ *a a(ya?]

[}

Q

2 ( mb) . 02
where (u8) = —7 — and a(us) = - £ a(nwb), == .
Yt v Vg

Equating the above to zero yields

-v,, kLVL> v.,mb;) o q/a (us)
(W"+ KV, )e? [a q+1/a(”8)2 ( )az JQ+2 a(”s)z:l



- 30 -

From Eq. (28e) we obtain the same result as Eq. (29a), viz.

wV,, 93} /o (usd)
k, » - <—cz'> -8—23;%51-”—8-)1 (31)

since w' > k,'V,. Since for many cases of interest, the ratio of ¥'s is
less than one, - k, is somewhat less than wV,/c®. [Some care is however
needed in the region where 63;1/8(;18) = o).

(b) Attempt to Match k, for the Electrostatic Wave

The next task is to match satellite and group velocities
perpendicular to the magnetic field direction. Since the k, term is very
small (see Eq. 30) we assume in the following discussion that k, = O.

First we show that for n > 4, it requires unrealistically small
‘values of V, to obtain a match using the Bernstein electrostatic mode in
the region where k = k, and w are real. From Eq. (26c) the Bernstein
mode is given by

2

w *n®I w
w‘z-nzwbz =--P-A——-e /(1 -—:—2'—2'> (32)

@ -wb

where k = v"")wb/vt, and we assume that w?® > (wb2+wp2).
Parenthetically, we note the point for which the group velocity

is zero, dw/dk = 0, namely

I
é-ax(:tne")‘/x) =0 or )\(1 - ’;*1) =n -1 (332)

This relation is more appropriate to use than the tangent method pointed

out by Stix (1962, p. 229) involving the maximum value of (Ine-)\)
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(The tangent method of Stix turns out to be very insensitive for
obtaining the value of A,) Equation (33a) can be solved by a trial
and error method using tabulated values of the In Bessel functiomn.
‘The results are given in Table 2, where for n = 2 to 5 the value of A
is given and also the value of (nIn/A)eﬁA which is required for
obtéining @ - mw, from Eq. (32). These results are compared with the

following good empirical relations for A and @ - o, vize.

1

w ? w? -
A% 0.342n°  and -~ 2R B o B (33b,c)
b nt Wy w" -0y

We are however more interested in matching dw/3k to V, than

equating it to zero. Letting dw/0k

V,, Eq. (32) yields

2 -A
Xﬁ gﬁ 2 - vy W 2nl e N __In+1 o (a)
v\ ¢ wz-fwbz nw y I n e
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Since V,/v, can be as high as 1 /16 and wp’/a;bz varies between 1/4 and
100 (see discussion after Table 1), we note that the maximum value of
the left-hand-side is 4/16 = 0.25. However we show below (in Table 3)
that the right-hand-side never attains such high values for any n. One
may argue that the satellite seldom moves perpendicular to the
magnetic field., But even assuming V,/V » 1/10, we require the right
hand sidé to attain a value of 0.025. This is possibly for n < 4
only and not for larger n, as follows from Table 3.

The above discussion indicates the importance of the maximum
value of dw/dk. Differentiating again Eq. (34a) and equating the

result to zero yields

n_ _ A(hA+5)
I, WAF + A(3-1n) + 2n% - 5n+3 (34b)
Equations (3L2,b) are difficult to solve analytically in the region

where A ~ n, so that we resort to plotting the right-hand-side of
Eq. (34a) for various n. In Figs. 17a to 174, we present plots for
n =2 to 5. We pick out the points of the maximum slope and tabulate
these in Table 3.
Table 3 corroborates our assertion on the difficulty of
matching V, to dw/dk for n > 4. The reason for this is that the dispersion
relation for the es mode varies over a very large range of k for a slight
change in w. Tables 2 and 3 also show that for the lower harmonics, a

match also requires a measurable shift of @ - rnw _, which is not observed

b
on the Alouette. The Alouette frequency sensitivity is at least one part

in 200.
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TABLE 2

The Values for Zero Group Velocity
for the Bernstein Mode

€ w 2
n |A(exact) | Ba. (33) | (w-nuy) - ( — 7>(exact) Eq. (3%)
[ Wb .
2 1.26 1.37 0.1025 0.1125
3 3.05 ! 3.08 0.0479 0.050
}
I 5.50 | 5.47 0.0278 0.0281
5 8.55 8.55 0.0179 0.018
TABLE 3
The Exact Values for Maximum Group Velocity
for the Bernstein Mode
] 0,2 v ? o, 02
n A a‘%) <"'—2'X1 ‘*2—2—?>(56e Eqe 34a) | (w-nw )“1’(1 --r%) ;
v, W W< -w b‘w We-w !
max\'t p b P b/
P 0.2 0.1475 0.041
3 1 0.055 0.0245
L 2 0.0269 0.0137
5 3 0.0151 0.00757
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The case of real w and complex k = kr+ :’Lki may seemingly hold
hope of obtaining a match near the turn-around point in Figs. 3 or L.
However, near these points, kr and ki are of the same order, so that the
wave is attenuated as the exponent of - kirz -krrz -kthz-0.1 th/Vt’
since we estimate kr to be about 0.1 w/vt near the turn-around point.
This gives much stronger attenuation than observed since taking
v/v,c = 1/16, one finds a e-folding time of wtwz 160 rather than 10* as
recorded by the Alouette. Another point against the es mode is that one
would sometimes expect a measurable Doppler shift of krvlz 0.1w\f_|./vtz wV/ 160V
which is not observed. A large kr is also associated with a small region
(a characteristic length of 1/kr) of excitation less than the antenna size,
which would require consideration of sheath effects. Our analysis is
inadequate for considering sheath effects. Furthermore, as discussed in
Part 1, the detection of a signal af'ter the transmitter is Shuf requires
consideration of complex w rather than real w, Essentially, we are dealing
wij;h an initial value problex\n in time. PFor very slightly complex w, the
above turn-around point or matching point does not ‘ocour (see Figs. 5).
In conclusion, we must relinquish attempts which are consistent with
observed effects for a match using the Bernstein mode,at least for n > 4.

(e) Matching k, for the Extraordinary Wave

Let us now attempt to obtain a match for lower k values near or
less than the Appleton-Hartree wave numbers., We start with our

fundamental Bq. (18b) for the extraordinary wave:

1 (2K1- x)x

= 35
Pk2(n--2)F KK -K, x (35)




2 2 2 2(!1—2)
kzcz . W w " nz
where * =07 K1)=1-w+wb’ KL=1_52_-L(,J?’ %(T) n_,
T - 2'n!

Since w is complex, we differentiate with respect to W, and equate awr/ak &V, .
Note however that W, <<<w (see Part 4, Sec.VD) so that we let aw/awrz1.
We also neglect throughout the derivative awi/awr since this is of order

wi/wr and hence negligible. We denote the F derivative for convenience as

ST ; Tt
e A e TR SN
i . ST

L R

“ L UP
9F__ 0w __ OF oF aus b
] ~ — o ' ="
TR EEY e, T aady % et 5o =T 5 o7

The derivative of F with respect to W, is taken along the track of real F.
The parameters which have to be differentiated are k, F, K‘.L’ Kr’ K, and x.

The result is

F' kV‘_nwb> 2(1’1“'2) 2X(U - kV_L)

(2K -x)K,x
= ]

e 2(n2)p (K,lKr-K_Lx)w‘: x + (2K, -x) +K K -K, x

kw 22x 2 + Wy (2Kl-x)2w pz(zwz 2)(2K -x) (2K - x)xw
* K KK, X {0 ® (e, (K:LK K, x)(0-w z)Y + (K__LKr-K_'.x)w3 (o= ﬂ? G(K x)(w-affz

(362)
Since w>>kV,, the kV, terms on the right hand side are negligible.

Essentially this means that we neglect the derivatives of Kl, Kr’ K, and x
with respect to w. We can substitute Eq. (35) into the last term on the
left hand side of (36a) and combine this with the remaining first term on

the right hand side to yield
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(K, - x)Kx _ /ler - 1{9:>< - Fu kV_L> (360)

(n-1)2K.l-nx+ K. K.-K,x = N 2(n-2)Fz w

\ 2 w- ".,'\2(1{1}(r -K,;x)

__ /ZKl-x>( Fl_;g kV,_) _ | / x(2K1"x)z ><Pk2(n-2)F‘L _}%}_> (260’6')

where Eq. (36c) or (36d) is obtaining by substituting into (36b) values
for F or F? respectively from (35).
There seems to be three regions where one can satisfy the above
equations, namely near |
(1) the Appleton-Hartree solution, x » K;K P/KL -
(i1) near x ~ 2K, and
(iii) for x << 1.
Let us consider these separately.

Case (i) - When x = KlKr/K-l> 0 we find from Egqs. (35) and (36¢)

K 3
K& 5 - ! i{r k2(1&-2)PF . SHE R

* X, X, K, F'ukv, (572)
where K, = (Kl+ Kr)/2. Also .from Eq. (36d), we note that
2
/X, oy PRV,
of 22 . - mB2(n-2), = (37v)
Kl w

which shows that (V,kF'/w)< O, Hence from Eq. (37a), we can have

x < K]_Kr/K.L depending on whuther F $ 0. This is consistent with the

signs of F used in Figs. 5 near the electromagnetic solution. Since
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+ k = w/x/c, Eq. (37a) gives a very small deviation of x from KlKr/Kl,

of the order of v,*/cV,.

2
N 2/ e Y (370)
K, | %X, F oV,

Equation (37b) cannot be satisfied for n = 1 since the right-hand-
side is much larger than the left-hand-side. This is agéin consistent with
the results in Sec. 3. For n = 2, Egs. (37a-c)~can be satisfied for
valuesvof F of order one. In fact for x < ler/Kl’ we can use the region
where F > 0 and both w and k are real. As is shown in Eq. (22e) the slope
aw/ak'is of order vt"’/c2 at w = o, and increases to about ¢ as w tends
towards the Appleton-Hartree solution. At some intermediate point, the
slope must equal V,. Thus a match is readily obtained for n = 2 and
w>mw, on the F>VO branch in contrast to n > 2 where it occurs on the
F > 0 branch for » < mw, . In all cases the difference (w-nwb)/b is
relativistically small.,

Note that these matchirg points are present only when there
exisfs an Appleton=-Hartree solution, i.e. when KlKr/Kl > 0. However,
resonances are observed on the Alouette apparently unaffected by the
extraordinary wave cut off, §r=(). (See Alouette data in Fejer and Calvert
(1964), and in Calvert and Goe (1963)). Apparently, the cyclotron
harmonics exist vhether or not the extraordinary wave can propagate. This seems
to indicate the additional importance of other matching points, namely
case (iii) below and the ordinary wave. Also the value of x from Eq. (37c)
yields a wavelength nearly equal to the free space wavelength which is also

of the order of the antenna size. The anelysis may kuve to include
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both finite antenna size and possibly sheaths around the satellite.
We do not propose to do this. The above remarks also apply to case
(ii) which we proceed to discuss. Cases (i) and (ii) are of interest
nonetheless for situations with very small antennas in a uniform
mediume.

In conclusion, the matching points in cases (i) and (ii)
may be very important. Since two exist for either case differing
relativistically in w and by about vtz/cvl in x, beating between
these resonances or between resonances of various modes may perhaps
produce the modulation effect actually observed for the second harmonic

resonance in S-48 (see Calvert et al, 1964).

Case (i) - When x = 2K, > 0, we can also get, from Egs. (35) and (36),
two matching points depending on whether x 2 2K1 and F 2 0 respectivelye.
To see this, we expand around x z'ZKl, we find that (F'kVL/b) < 0 from

Eq. (36b), and from Eq. (36c) we obtain

55 F Ty
x-ZKl=-L+-L—i,-;-}-<9-; or |x—2Kl|=2'/—2-}-{"1§,-—c—- (38)

Besides the remarks discussed under (i), we note another.
our basic Eq. (35) is not valid very close to x'= 2Kl since in this region
the F > 0 and F < O branches couple (see Sec. 3) and in fact we should
use the Qore exact relation, Eq. (17b). (Note that Eq. (19) gives the
correction ;t X = 2Kl.) A more complete analysis isbnecessany to see if

the matching points around x = 2K1 actually exist or not.
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Case (iii) - We now consider the matching point
for x << 1, ~ . This point is a direct consequence of the relativistic
analysis which shows (see Figs. 5a to d) that w rises rapidly above mw, as

k, tends to zero. Because of the r?,pid rise, the slope a‘w/ak‘_ becomes

large enough to effect a match with¥,. For x << 1, Egqs. (35) and (36)

reduce to
. 2(n-1)v, 2 K V,c\?
U t F 2(n-2)_F r i
k, = ﬁ‘-——:——c T w v end Pk, T2 = 817 ‘—'zvt (39a,b)

Since in this region F is large and of exponential form, F' is more or

less of the same order as F so that the order of magnitude of k, is

. 2(n-1 )vt2
k.l. R A —m——y——a— () (390)

¢V,
We also note that when Kr> O, F'~F> 0 and vice versa, which is in
agreement with Figs. 5a to d. Again for n = 1, we obtain no matching point.

Equation (39¢) gives the value of k,. Comparing this with Eq. (29a) for k,

(neglecting the ratio of F-factor) shows that

k, vt2
T 2(n=~1) AR (39d)

which is a large number greater than 500. This is consistent with the fact
that the group velocity vector can acquire a substantial component
perpendicular to the magnetic field only when k, >> k,- 0. Otherwise it

points nearly directly along the magnetic fielc direction.
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Equation (39b) can generally be satisfied for values of ud
between® 3 and 40, This gives a value for § = (w- nwb)/w < 10 vtz/c2 107>
which is ‘negligible. Thus the resonance occurs practically at nbb as far
as any measurements are concerned.

Equation (39¢) indicates that the characteristic length L of
excitation perpendicular fo the magnetic field is larger than the antenna
length but smaller than ambient ionospheric inhomogeneity. Taking
w =21 x 10%sec™, V; = 0.3V = 3x10%n/s, v, = 1.,6x10°m/s and n =5 we
find s

L, = 1/|k,| = 210 meters

This length is between the Alouette antenna length ~ 47 m and the thickness
~ 1500 m of ionospheric sheets of ionization (see Muldrew, 1963). As a
result we can proceed with our analysis without considering the minor
effects of finite antenna length, sheaths around the satellite and
inhomogeneities in the ionospheric medium. From Eq. (39d), the character-

istic length parallel to magnetic field with V, = 0.96 V is

This length, although large, is still less than an earth radius = 6ol x 10°m.
The second harmonic as observed by Calvert et al (1964) on S-48 occurs over
a latitude range of 6° or ?15 radian so that the magnetic field is uniform

for distances of the order of 6.4 x 10° me Nonuniformities will produce

some effect on the signal amplitude. This suggests to look for possible
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correlations of variations in signal strength with nonuniformities along
rather than perpendicular to magnetic field lines.
The Doppler shifts associated with k, and k, are negligible.

Using Eq. (39¢c), the Doppler shift,

|k, vV, /0| ~ 2(n-1)v,2/c? (39e)

is relativistically small., That due to k, is even less.

Since w is complex, the exponentially time decaying part
exp (—wit) has to be examined., On the rsheet where F is real and very large,
we have w, < 0 so that exp (-iwt) does give a decaying part. However since
our effects are restricted to the region where 8 << 1, we know from Part 1,
Eq. (40d), that wi/wr ~ mm/u. The exponential term is thus of order
exp (-wrtvtz/mrcz). For the times of interest, w_t = 10*, the argument
of the exponential term is very small, so that this time decay is
negligible and of no concern. The actual time decay will be shown in
Part 3 to arise from the other time-amplitude factors multiplying this
exponential. On the same basis, we can neglect collisional damping since
even taking v = 10 sec™! fo: the collision frequency, vt<< 1 for the times
of interest,

The above matching point is independent of whether or not an
electromagnetic wave can propagate and thus always occurs for n > 1,
except for one case mentioned below, When Kr = 0 (see Eq. 39b), we still
get a matching point by including the next order term in x. From Egs. (35)
and (36a), we see that for x << 1, K.=0andK, = (K1+Kr)/2 = Kl/2, we

have
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Pk;,z(n 2)F =-1/4 and E‘F‘-.' Sy —+ 2(n-2) = = (40a,b)
Voo oW Ky
Ve F
If n# 2 k =-2(n-2) == 0 =7 (40¢c)
c’v, F

so that the k, matching point is not changed much. The value of F required
to satisfy (40a) is somewhat less than for (39b) so that w is very slightly
nearer to nw, . When Kl = 0 and n = 2, no matching point seems possible

for x << 1. Recall also that no match exists for n = 1, We note (k-

in Alouette data (see Fejer and Calvert, 196l.) resonances are observed

for »the first harmonic and for the second even when it passes through

K’.l = 0. Below we show that with the ordinary wave we can obtain matching

points even for the above two situations.

(d) Matching k, for the Ordinary Wave

A similar analysis can be performed using the ordinary wave

dispersion relation given in Eq. (27a).

2 2(n-1) w ?
1 X “ Vt) 1
= where P! =-P?<— ; Kp=1--%
P,1{_.'.2(n 1)Fn+% K,-x wp "\ @y OBy w
(41)
Equating aw/akL =V, and letting w>> k,V, Wwe find
k,V F'uv
(K,-x)2 ®! u 171 1
n(K,-x)+x = "sz) FZ e 2(n-1) w -‘-"k,_(K" - x) Fo (42a)
L
BF Qud | OF

where F refers here to Fn+5/z with argument pé and P! a 33 awr R 5ns




As x » O,we obtair o matching point when

2
Yy

3 VJ_C 2
k, =-2n —5- 2(n-1) F K

F
v%g-.-, and P'k, 7 = ox i (42b,c)

(Compare with Egs. 39a,b.)

This time we can include the fundamental (n = 1) cyclotron frequency (see
also Figs. 6a,6b). Besides this advantage, the previous favorable

remarks in Sec.‘Vé'apply as well to this matching point. These are the
relatively minor aependence on antenna size and on ionospheric inhomogeneity,
the negligible difference (w-nwb)/b, the negligible imaginary part of w,
the negligible Doppler shif't and the independence of whether or not an
electromagnetic wave can propagate. When K, = 0, Eq. (42a) yields

v2

t w F 2(n-1
k ==2(n-1) Al and Pk, ( )F = -1 (k2d,e)

so that we again obtain a matching point provided n#£1. This time,

experimental data (see Fejer and Valvert 1964) on the Alouette actually

0

indicates a drop of 31gnal forn =1 as K;,» 0 or w-»wP.

Similarly we can get matching points on both sides of x=xK,:

2
F F 't
PO Of |x-K,| = 2/K, = (42£)

x - K, = 2K, Ky Fr CV

In particular for n = 1 and x < K,,, there is a matching point for real k,

w and F-,/2 (see Figs. 6a and Le).




The advantages of these matching points are the negligible
difference (v - nwb)ﬁ», the negligible imaginary part of w, the
negligible Doppler shift, that it may be easier to excite a wavelength
of the order of the free space wavelength and that the n = 1 case can
be included.

In the next section, we give the nonrelativistic approach, the
results obtained and a comparison with the more proper approach given
above., We point out the inadequacies and errors introduced by not
using relativistic analysis.

V. NONRELATIVISTIC ANALYSIS

If we apply the nonrelativistic formulation we get a completely
different picture. The nonrelativistic formulation is incorrect for
(w—nw.b)/w < vtz/cz and the analytic continuation in terms of the Z
"plasma dispersion function" is always incorrect for (w-nwb)w < (kqc/w)?
and in particular for k, ~ O (see Sec. VI of Part 1). Let us nonetheless
use the following nonrelativistic limit of the F function to see what

results are obtained. (For simplicity, we perform the analysis only

when k, = 0).

2

v
Fq -+ (ud )—t! —c%- w -wnwb (l;.}a)

Strictly, Eq. (43a) is only valid for |u8] > 1 and Imw > O (see Part 1).
If we wish to include -w values as well in the same formulation, we

use instead of (43a)
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v 2
t 1 1 t W
Fq-’ crw(w-nw +w+nwb>= c® w?-nw ° (430)

In Eq. (17b) we again neglect higher order A terms except for

the last product (kl*(n-z))-term. The equation for w? -nzwb2 becomes

(w® = n?w, 2)3( ) = (w® - n?w_2)( ) 2 27 n? P‘A2nn2
W -nw K -xK,)~- (¢°-nw 2K, - x)2w + =0
R b P oo™ (n41)2%P(n1)?

(bha)
where we used the expression for P in Eq. (4d). Solving Eq. (4k4a) for

w? - nzwb" yields with

w 2 w 2 w 2
_wawbs ’ Kr=1-tg2w~wb5 and K‘-=1-lw=-wb!5

2.2 n-1
wz_mzzwpn)" l: k2c z:l/ k_zcz’f._}if_:] (44b)
b Krn!2n 20° K:L w KlKr
n+1
kz 2
and w? - nzaubz /[1 - (4ke)
K.l(n+1 Jni2®

These two solutions are decoupled provided k®c?/w? is not near 2K, .

We note that Eq. (44b) is the nonrelativistic equivalent of
Eq. (18b) as is evident upon substituting Eqs.“(b,}b) and (4d). In addition
however we have succeeded in deriving a new wave given by (44c), which is
not present in the more accurate relativistic formulation., Since for this

n+1 . . . .
 wave --nza.)b2 ~ A", the w-k dispersion curve is very much localized




..)4_6..

around w = nw, and never deviates appreciably from nw, except near coupling
points between it and the other waves. This is the localized third wave
which appears in the calculation of Dnestrovskii and Kostomarov (1962) using
nonrelativistic analysis. We note however from Egs. (44b,c) that

w? -nzwbz < vt"'/cz for

n-=2 2
k2c? ¢ \ n-1 . k2c? w2 [Vt
~7 < . smce)\~~ﬂ—w L

t b

so that the basis of derivation from nonrelativistic analysis is incorrect.

Furthermore we know from Part 1 that for F to be large we require its
analytic continuation with Imw< O, and then its form differs from the large
values derived from (43b) as w- w, . (In fact,as already pointed out,
Egs. (43a,b) are valid only for Imw >0.) Actually as F becomes large,

w increases above nw, (see Fig., 5) rather than approaches nw, .

Before we leave the nonrelativistic analysis, we point out the
features of the dispersion curves based on this analysis and actuallyv draw
schematic curves for var:ious situations. These curves will be compared
with those including relativistic effects.

As k » 0O, the nonrelativistic dispersion equations (U4b,c) yield

n+1 2

2_.2. 2
W -nw =
b

Lo ?nzkn-1 w? w 2\
2 - E and w® - nw

P
1o w(w-wb)

(li'5a’b)

b (ni‘l)n!Zn/ E ) H:E“’bj:]
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When k®c?/w?>> 1, the equations yield the Bernstein longitudinal wave

. s 2w _2n3) w ?
ST T e /[ [CHEDN 5] (162)
o zngnM
plus the additional wave - w?+ n2w, 2 = ——E . (46b)
b 2,2
(n+1)nt2k3e

We next locate the points of zero group velocity. Obviously

Egs. (46a,b) predict such points at k = O or A = 0 and w = mw, . Other

points exist near the electromagnetic solutions. Differentiating Eq. (44Db)

and equating dw/0k = O yields for X, = koZc2/w?

(n—2)> 5 K

x°~K+K<2K+K o K+K'° (47)

where K 1

(K1+Kr)/2 and @ » wy . Let wp, o and wy, be » values for

1]

which K =0, K, = 0 and K, = 0 respectively. Also let xq = KlKI/KJL and

Xz = 2K1. Then there are four cases:

(1) K, >0,k >0and K >K, (rw b> “p > Y >w). There may be two

Zero group veloc:.ty points between x¢ and x, (x2> ¥ here) provided

2(n-8) w
(n®*-8n + 8) > -PT(_T and —E!' < n(n-1). This occurs infrequently.
“y,
(i1) K, <0, K <0 and IKrl >|Kll . (nwb<wL<wT< wR). There are no zero

group velocity points.

(iii) K,>0, K.<0 with' Kl > 1K l . wR> mb?wTN"L)‘ There is one zero

group velocity po:mt for X< Xz,




_1‘_8—

(iv) K;>0, K <0 and IKrI > K o (op<nwy <up< wp)e There are two
zero group velocity points, one for x< xz and one for x> x with

X4 > Xz here.

Differentiating Eq. (4kc) and equating dw/dk = O gives one zero group
velocity point for x> x, and w> Wy, The values of w for all these zero
group velocity points are relativistically close to nw, , SO that the above
results are questionable, Furthermore the k = 0, w = N point does not
exist relativistically, since for large F, the w‘curve rises above o, and
one never actually gets a k = 0 value.

Near x = 2_K1 or x2 = 1, the n-1 and n+ 1 waves

(viz wz--nzwb2 « An-1, Mol

) couple. Also the n-1 wave comples to the em
wave near x; = 1. For the four cases discussed above, the dispersion curves
ineluding the wave coupling are drawn schematically ‘n Figs. 18a to 18d up to
values of x slightly beyond x; and x,. The solid curves represent the

n-1 or n+1 waves and the checked parts refer to coupling regions. Circles
indicate the possible zero group velocity points. In order to match group
velocity to satellite velocity we require dw/dk = V, where V, is the
satellite velocity. Usuelly dw/dk is much less than V,. A match can only
_ be found on either side of xy and only when an electromagnetic solution
exists, as in cases (a) and (d). These points are indicated by x. Thus
in the nonrelativistic approach, satellite motion eliminates any épinch"
(or matching) points.near k = O. Near the "light line", a match can be

accomplished only if an em wave exists at frequency nw, . Relativistic analysis
however indicates that match can also be accomplished near k = 0 (See Secc.IVe,

d.) The above illustrates the major differences in Figs.18 as compared to

the relativistic equivalents in Figs.b.
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The nonrelativistic approach agrees with the relativistic analysis
for Eq. (46a) in the region (w-nwb)/w> th/Cz. (Compare Egs. (46a) and
(24).) The form of this Bernstein es mode and matching points to satellite
velocity have been discussed in Sec. 4b and the analysis given there is
essentially nonrelativistic. As it should, the nonrelativistic theory
also provides the correct variation of the Apbleton—Hartree waves outside

of the |u8| <1 region, which is according to (4ka)

KK 2 gy 27" p2
x - L == T2 12 z E'l' —R———i‘ (48)
K, (0* =n wy ) \K, 2P

(Compare this with Eq. (18b) with (43b) inserted in it.)
We can similarly investigate the nonrelativistic version of the

ordinary wave dispersion when A<< 1. Substituting Eq.(43b) into (27a)

gives
2w 2 n w_ ?
K" - X - =7r Pz z A =0 where K“ = 1-—%—
we -n“w n w
b n!2
2w 2 n
2 2. 2 D A
r w* - n"w ° =
° b o0 (K - x)

For K, > O or w>»wp, a plot of w versus k is given in Figs. 18e. One

point of zero group velocity occurs at w = k = 0 and another at

x = nK,/(n-1)

and 3w/dk can be equated to V, on either side of x = X,,. The case of
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K, < O is indicated in Fig. 18f. A monotonic decreasing variation in with
respect to k results for A<<1 with dw/@k = 0 only at w =k = 0. There is
no possibility of matching satellite to group velocity in this case when
A<,

In Figs. 19 to 27, schematic dispersion curves are drawn for
propagation at 90° and various 4 wy ratios, showing several Iiurmonic
cyclotron frequencies together. These curves show the behaviour for
large A values as well and include the three cases actually computed by
Dnestrovskii et al (1961, 1962) both for the ordinary and extraordinary
waves. The relativistic versions have been given in Figs. 8 to 16. Many
features of these curves differ. These differences and their interpretation
have been discussed above. In a nutshell, this report shows that
nonrelativistic dispersion theory in the vicinity of cycl&tron resonances
is incorrect for very small k,. We have also pointed out the significance
of dispersion effects near k -» O, where the curves rapidly rise . above
W=1w, 4 as well as dispersion effects in regions where electromagnetic

modes can propagatee.
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CAPTIONS FOR FIGURES

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

The dispersion curve for the extraordinary electromagnetic wave
near cyclotron harmonies, nw,, for real w and n> 2 (Pig. 1a),
n =2 (Fig. 1b) and n = 1 (Fig. 1c). The dashed part of the
curve is the region where k is complex.

A polar plot of the complex function F (Fig. 2a), F~'(Fig. 2b),
- ‘

F-(n-n (Fig. 2c) which are required when w® > sz and of
; -
- F (Fig. 23), - F' (Fig. 2e) and (- F)'(n’1) (Fig. 2f) required

when w? < sz = Wy

imaginary parts. The numbers O, 4 » are values of us, the

24 wpz. Subscripts r and i refer to real and

argument of F, marked off on the polar plot.

The dispersion curves for the plasme wave for real é, complex k,
near the cyclotron harmonics when w?> wTZ (Fig. 3a) and

w? <w,l,2 (Fig. 3b). The dashed paris indicate regions where k
is very complex.

Schematic dispersion curves for the extraordinary and plasma waves
for real w and complex k. (Dashed parts indicate very complex k
values.) .

(Aa)nwb>wR>wT>wL or K, >0, K >0,K >0.
(ll.b)wR>wT>wL>nwb or K, <0, K <0,K <0.
(l;.c)wR>nwb>wT>wL or K, >0, K, <0,K >0.

(M)UR>wT>mb~>wL or K; > 0,K. <0, K <0.

wz

W
where w g, =I-:92—+ —E—-*wpa or X=1*Y or Kl =0
(R) (¢
Wy = a)pz+wb2 or X=1-Y orkK, =0

SFTIREI S <r Qppote < cxppn0h



Fig. 5.

Fig:

Fig.

Fig.

Fig.

Pig.

7.

9.

10.
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2 2 2
)] Cdb w.b W
X:_a_)'%_, Y=F’ K(%)=1-m’ K-L=1-F:a%!

(4e) Dispersion curve for the ordinary wave when w is real,
w > wp and k complex. No solution is possible when w < wP.
When n = 1, the wiggle is subgtantial but for n > 1 it is
negligible., Here K, =1 - %%— .
Dispersion curves for the coupled extraordinary and plasma waves,
for complex w and real wave numbers near or less than the
electromagnetic values. The 4 cases correspond to those in
Figs. 4La-d. The dashed parts indicate the coupling regions
between F > O and F < O branches.
Dispersion curve for the ordinary wave when w is complex and
k is real. Also w > vy, (Pig. 6a) or w < w, (Fig. 6b).
Ratio of plasma to cyclotron frequen_cy (or Larmor radius to
Debye length) versus altitude with an assumed model of electron
der;sity and magnetic field at the equator for daytime and sunspot
minimum,
Schematic complex w - real k dispersion curves including several
harmonics for the coupled extraordinary and plasma waves when
2(«)1)2 > wpz.
Complex w - real k dispersion curves for the ordinary wave when
w, > wp.

Complex w - real k dispersion curves for the coupled waves when

22 2 o, 2
3wb >wp > 2wb .




Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

11.

12.

13.

14.

15,

16.

17.

—52}- -

Complex w ~ real k dispersion curves for the ordinary wave when

2@b > wp > wb.

Complex w - real k dispersion curves for the coupled waves when

2 2 2
wa >aup >3wb.

Complex w - real k dispersion curves for the ordinary wave when

3wb>wp> Zwb.

Complex w - real k dispersion curves for the coupled waves when
2 2 2

wa > wp > 6wb .

Complex w - real k dispersion curves for the coupled waves when
2 2 2

12wb > wp > 8wb .

Complex w - real k dispersion curves for the ordinary wave when

hwb > wp > Bwb.

Plot of the normalized group velocity versus A = klzvtz/wb2

for the Bernstein electrostatic mode for n = 2 (Figs. 17a),

n =3 (Fig. 17), n = 4 (Fig. 17¢c) and n = 5 (Fig. 174).

18a - d. Nonrelativistic version of the dispersion curves for the

coupled extraordinary and plasma waves. The four cases

(Figs. 18a to 18d) correspond to & todin Figs. 4 or 5. The
checked portions on the curves indicate coupling regions between
the waves, circles indicate zero group velocity points and
crosses indicate points where the group velocity can be matched

to satellite velocity. The waves varying as w=-mw, « An-1 or

b
AP are designated respectively n-1 and n+1. The values Xi,2 are

X4 =K1KP/KJ_ and xz = 2K .

18e,f. Nonrelativistic versicn of the dispersion curves for the

ordinary wave when w > W (Fig. 18e) and w < wp(Fig. 18f).
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Fig. 19. Nonrelativistic version of the schematic dispersion curves

including several harmonics for the coupled extraordinary and

plasma” waves when Zwbz >w 2.

3
Fig. 20. Nonrelativistic dispersion curves for the ordinary wave when

Fig. 21. Nonrelativistic dispersion curves for the coupled waves when

Fig. 22. Nonrelativistic dispersion curves for the ordinary wave when

Zwb > wp > wb.

Fig. 23. Nonrelativistic dispersion curves for the coupled waves when
2 2 2
6an > wp > Bwb .

Fig. 24. Nonrelativistic dispersion curves for the ordinary wave when

Bwb>wp> 2wb.

Fig. 25. Nonrelativistic dispersion curves for the coupled waves when

2 2 2
Bwb >wP >6wb.

Fig. 26. Nonrelativistic dispersion curves for the coupled waves when

2 2 2
12wb >a)p > 8wb .

Fig. 27. Nonrelativistic dispersion curves for the ordinary wave in

l.wb >a)p> Bwb.
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- ABSTRACT -

The calculation is discussed of the time behaviour
associated with the frequency singularities resulting from
pinches in wave number integration. The pinches occur when
an integration contour in wave number space is pinched between
poles.

This technique is then applied, for the Alouette
situation, to the singular case for very small wave number
when the satellite and group velocity are equal.

The relevant Alouette signal is found to be indistinguish-
able from galactic noise in a time of order 20 usec, well before
the Alouette receiver ic turmed sn. The cyclotron resonance must
be found elsewhere, probably in the coupling resonances or in

the Bernstein modes.




I.

II.

INTRODUCTION

In this section we discuss the calculation of the asymptotic
time behaviour of the cyclotron harmonic signal. As indicated in the
Basic Theory section in the General Introduction, the singular time
behaviour will be obtained by considering the behaviour of so-called
complex plane "pinches". By a complex pinch we mean the pinching of an
integration contour between two converging singularities which coalesce
at some critical value. The pinch analysis will give the Laplace
transform which proves to have a singularity other than a simple pole:
e.g; a branch point or a logarithmic singularity. We must then invert
the Laplace transform to obtain the time behaviour,

We first consider the general method of pinch points, following
the treatment given by Briggs (1964), and then the detailed calculation
for the pinch in the ordinary and extraordinary cyclotron harmonic
waves which occurs for small g‘(g,<< Appleton-Hartree value for 5).

SINGULAR TIME BEHAVIOUR FROM PINCHES IN THE COMPLEX k-PLANE

The solution to many perturbation problems for a uniform
medium is very often obtained by using Fourier transforms (k) in space
and Laplace transforms (w) in time, i.e. a plane wave transform.

The characteristic dispersion of the medium usually emerges
in the form of an expression, say D(k,w), in the denominator of the
transform whose zeroes give poles in the complex k or w plane (whiéh
ever one is first inverted).

Depending on the method of excitation the result is a set
of waves (normal modes) with frequency w(k) or wave number k(w)

determined both from the excitation and from setting D(k,w) equal to zero.



The group velocity (the velocity of a wave packet with some spread in
w or g) is usually given by dw/0%. This is the standard result.

Further information requires more advanced technique. For
instance, although only simple theory is needed to discover the
dispersion and group velocity relations, it requires ingenuity to
discover how the wave packet will decay, as it will in a dispersive
medium,

It is evident that, to an observer moving at some arbitrary
uniform velocity, the amplitude of the wave packet travelling at that
group velocity will seem to change very slowly and only because the
packet itself is spreading due to dispersion,

This is held to be the situation for the Alouette resonances,
so the calculation of the decay with time of the wave packets which
travel with the Alouette is the heart of the problem. The preceding
two parts have been devoted to obtaining the appropriate dispersion
equations etc, Now we must use these quantities to give the time
behaviour. The first step is to transform the system into a wave packet
frame of reference in which the wave packet stands still, so that in
the new system aw/Bg_is Zero.

This proves to be essentially similar to the general problem
of absolute instabilities in uniform systems (Briggs (1964)). The
mathematics was applied originally to quantum mechanics and was applied
to the Alouette collective resonances by Nuttall (1965); Dougherty
and Manoghan (1964) also use this technique, but only investigate the

location of singularities.
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The characteristic feature is the coalescing of two (or more)
k-solutions to the dispersion equation at some value ko for a frequency
wo, to give a double (or higher) root with 3D/k = O (or all 2™ =1 _ g
for n-fold degeneracy). If the k solutions at some frequency Wo
come together from opposite sides of the line integrals in the complex
k-planes used to invert the Fourier space transforms, the integration
contour is described as being pinched between the k-poles of the
characteristic function. The Laplace transform then proves to have a
singularity at wo giving singular time behaviour. A simple example
should make this clear.

Example

This simple one-dimensional example is the one given by Briggs

(1964) (also Bers and Briggs (1963)) . With aD/8k = 0, from expansion

around wo, ko,we have for a first order approximation to D.)

aD 32D
D(wk) & 55— (w-wo) + (k~ko)* %55 - (1)
Note
: 1
-1 3
D=0 gives ki,2 = ko i[:(w-wo) g—g<~1g 5%) :l (2)
3D _ 8w D _ o . sp 80,0 29 _
Also EE—O and D=0 me akaw..Oso:Lfawa,ak—O

For the Laplace transform inversion (done last) which gives the time
behaviour, the inversion line integral in the complex w-plane is on
the same side of all singularities of the transform (in our case above

since we use [dt exp (iwt)... for our transform).



In the vicinity of we, as w runs along a line parallel to
the real axis and slightly above wo, the two poles in the k-plane
will move as shown in Fig. 1 for real positive (9D/0w)(392D/ak3?)" ',
(For a real negative coefficient the same tracks are traversed in the

opposite direction.)

at 1 W-R Dl'a.ara.m

B N
\6_0_3

3R - O

(@)

m-p{ane

Infesmﬁon

Line
Branch ole triec for
Cut | P jectories

Fig. 1. Anatomy of a pinch. Shown in (2) w vs k, (b) w, (c) k planes.

The Fourier transform line integrals go between these poles
for cases of interest. TFar from wo one or the other residue (depending
on which half plane Re ik x < 0)ysay ki, gives a result for the Laplace

transform L{w,x)




L(w,x) = k gk Jexp(ikx) (3)

5]
D
(ak >k =k

In general this will be a function of [w-an(lmll form and
will give a simple result., Near wo the appropriate value of. D is

(k-ko)?32D/0k?® and with the k~ko value from D = 0, we have

L(w,x) = S(ko)e{p(iko x) ()4_)

2012 4
o030 (0 - wo)Z
dw 9k
woko

There is a branch pole of L(w,x) at wo. Notice that if 8D/dw # O as

is true for cases of interest then 32D/0k?® is equal to

%‘ -g% g—g) = (3D/3w)(8%w/0k?) since %kJ- 0 and we have
\

g(ko)exp(lkox) (5)

R

The quantity (9%w/0k?) is essentially the curvature of the w vs k
locus for D = 0 and so the flatter the curve the larger the signal.
By a standard formula or by appealing to the integral definition

of the gamma function I'(v) (v > 0) for (w - wo)~V it is easily seen that

(+,%) ﬂéﬁl_’.‘n.(‘_&ﬁﬂl,‘__@l} (6)
T @) ¢
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[Ip three dimensions the singular o result would have been (w-—wo)% and
the asymptotic time behaviour would have a t":y2 decay. This one-and
three-dimensional time decay is the same as for the behaviour at the
origin of the diffusion solution to an initial §-function and
indicates the connection between wave packet decay and diffusion.]
Discussion

This example has the essential features of the analysis:
the location and understanding of the behaviour of the k-plane poles
and recognition of the pinch situation, the calculation of the Laplace
transform by the space Fourier transform inversion to find the spatial
variation and, finally, the inversion of the Laplace transform to
obtain the time behaviour. The result is valid for many simple cases
of interest. The extra point which could have been (but was not)
explicitly included was the transformation of the dispersion equation
to the moving frame in which dw/0k was zero.

In the Alouette case the moving frame is the Alouette and
the velocity that of the satellite itself. The Green's function and
dispersion equation formulation is far more complicated than in the
example but in essence all we try to do is to locate parts of the
plasma dispersion characteristic where the group velocity equals the
Alouette velocity, and then find the resultant time behaviour at the
Alouette.

In complex situations there are many other considerations
and the reader had best refer to the literature cited at the end of
Part 3. The object here was simply to convey the basic idea of the

pinch method.
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NOTE

[Note added on the pinch calculation (III, IV, V)].
The motive for concentrating the pinch region discussed in
the ensuing sections was the fact that the Fejer-Calvert data (Fig. 4

(Part 4)) in general showed no marked cut-off at w, or Wy

R

A pronounced minimum in duration was observed very near-wP
for the 3wb resonance, but a data point beyond this indicated that
the resonance had, so to speak, recovered. The Zwb result showgd a
sligﬁt but definite decrease for wp above 2mb, but the complexity and
multiplicity of the Zwb dispersion means that it is difficult to make
an unambiguous interpretation of this result.

On the basis, then, of the Bwb "recovery point" it seemed that
coupling between cyclotron ﬁarmonic waves and Appleton-Hartree waves
was not tﬁe answer, Hence’we concentrated on the small k, or near-
cut-off pinch.

The calculation of field strength (V) performed after the
mathematical analysis gave results in reasonable agreement with theory,
so the other pinches were not examined closely.

The minimum detectable field criterion (E min) was taken from
Sturrock's (1965, Sec. VIII) analysis with only a numerical check on the
numbers given. In the final stages of proof-reading the report,
howevery it was discovered that Sturrock had misinterpreted a loosely-
stated receiver specification given by Thomas and Sader (1963, p 3).

The receiver minimum signal detection,including antennaymismatch was

given as"19 db“(20 db actually quoted by the Alouette workers)"above XTB".
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Sturrock used the plasma temperature (~ 10°°K) for T. In fact the
number should be nearer the galactic noise temperature which is ~ 10" °K
(Hartz, 1964). The error in power is 10* and in field 102,

The agreement previously obtained was spurious, the small k,
resonance should be masked by galactic noise in about 1072 of the
previous time or about 20 usec.. The receiver, turned on %00 usec after
the transmitter is off, will never see this signal.

Hence it is evident that the small k, pinch discussed at length

PR,

here cannot be responsible for the Alouette cyclotron harmonic resonances.

It is absolutely necessary that the Apple ton-Hartree coupling

and the Bernstein mode effects be investigated further using the

techniques already developed,but applied to the weak small-k, resonance.

The small-k, analysis is nonetheless presented to show how the

field strength value was reached, and how the general method is applied.




ITI. PINCHES AND CYCLOTRON HARMONIC TIME BEHAVIOUR

Now the pinch method will be applied to the problem of the
Alouette type using the dispersion equations of Part 2.

Récapitulating briefly, the pinch in the satellite frame of
reference must occur close to the cyclotron harmonic and come from
matching the wave group velocity to the satellite velpcity. The
resonances océﬁr even below Up and wp and so cannot be then due to
coupling between cyclotron modeé and Appleton-Hartree waves. Nor can
they be due to waves with large k, since velocity matching is not
possibly at high harmonics and the Doppler shift would be quite
noticeable. The pinches of interest are therefore those for small k,
(but k, >> k,) for both the ordinary (E|| B) and extraordinary (] B)
dispersion equations discussed in ¥Fart 2. These are a feature of the
relativistic theory.

Since the analysis for both waves is essentially the same we
give the extraordinary wave first and merely indicate the differences
for the ordinary wave.

EXTRAORDINARY WAVE DISPERSION EQUATION

From the plasma dispersion equations (Part 2, Eq. 14b) we have

the following approximate dispersion equation for small k, providing

k,%¢?/w?® proves to be much legs then K. = 1--a)p2(w(w--wb))'1 i.e. for

frequencies other than Wp:

2 2(n-1 ) 2 2 —
2(n-1)wg Ve n® ¢
- 2%k, w <wb> N ¥ tz { n+¥; 2v, 26® 2v M QK + 2 [m— n+3/z+Fn+’/2v].}

(8)



In nonrelativistic plasma theory (valid for (w- nwb)w"cz/vtz» 1) the
1

curly bracket term is

v,? v,?
t W wV t
Erw-nwb+1§:_\_f|1 +<k"+ ce (w-mb+w)':|

In contrast to preceding sections we will be working in the

satellite frame of reference so it is convenient to take the frequency
and k as measured by the satellite and to call this w and the rest frame
frequency be w' and k: we have w' = v (plasma) = w+keVyk,'=k,

k' = ko(plasma) = k,,+%\-;"-. The argument of the F functions is really
p(4 - (mb/w')) or u(1- nwb(w+ ke¥)™'), however k, proves to be very much
smaller than k, and its effects are explicitly contained in the

(kg + wVy /c?) term. The azimuthal k dependence frame k.V can only be
.expected to add a numerical factor which we ignore and teke the argument

of F functions as

For small k the &" function can be factored for a nearly circularly
polarized wave, leaving only the Dr term in the denominator.
Excitation

For simplicity in this complicated problem we take the exciting
antenna to be an infinitesimal current dipole with a predetermined
current, unaffected by the plasma response (i.e. an infinite impedance

source)s The spatial Fourier transform of the current ;[_LS(;_'_) is IL with
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I the same in k-space as ordinary space (;LL‘ has the dimensions of
current x length not current x density) and is the current dipole

moment. Beyond multiplication by the appropriate direction cosines in
gfnilik:’ further source influence on the result is nil, This, of course,
is why the infinitesimal dipole was chosen. It would be desirable in

future work to use a more realistic source to gauge antenna size effects.

Fourier Inversion - k,

The first step is to invert the spatial Fourier transform which
depends on R(k,w) alone because of the infinitesimal dipole assumption.
We need not consider the time behaviour yet, so we will be able to put
in an arbitrary excitation function transform P(w) later. For the low
value of k of interest we can write for the relevant behaviour upon

integration over azimuthal angle:

ik.r < <
1 3 e e ~ 1 - . d.k
@] st = e [ s | sl (10)
=~ oo

.
L]

We have gone into cylindrical coordinates (k,,$,k,) in k-space
and as discussed above, ignored any complicated angle variation. The
exp(i k.r) has also been dropped because k is so small, but it should
be borne in mind when behaviour or convergcace away from singular
regions is considered.

We change the k,' variable back to k,' = k, + wVW/c? in order
to eliminate k, terms and get an obvious pinch in k! at zero. (This
introduces a factor exp[-iw(W‘r"/cz)] which is negligible and is

ignored.) With this new variable D can be rewritten as
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-1 — N —
1. 2(1’1"1) g t 2(n ) n® F+ kt('a " Cn4 _vii‘"?)‘f‘l 1
wa s 2nn! Vt W s

= (A = k'nzB) (11)

L.

where the F functions are understood to be of order q = n + and

. 3 " = - 3
Fq*_,| is of order n + 1 + 4. Also F e Fq+1 2F + Fq__1 since

F;:Fq-Fq_1. The integral over dk, can now be done readily as follows:

[ 1 1 (12)
—_——— e +

fA k's’B B [ DA\ i —xr,  VER'+ k',,:|

) - .

By deforming the contour on the side where Imk .r < O and remembering

that we really have exp(-ik.r), the result is evidently

dk' 1 . _ Il 2
[A-k%=m%1:@ (13)

Fourier Inversion - k‘L

It now remains to integrate over k, i.e.

r

1 d’k 1k.r i k*dk
<21T53 D H (1Li-)
0
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Now B has a factor k*Z(n-1) which is conveniently factored out

leaving:

3 -1
= -(n-1)- Y .v_t,n __I.f._a " €
M=VBk, -v—tzfz ™ e F (15)

Our k, integral now becomes

(Zr)° D, " lmM | 02} (16)

(-
1 [ Lret¥F 4 j‘ ey
k
1]
The pinch occurs when two solutions of A = 0 coalesce and
pinch the integration line. As discussed earlier the pinch condition
is then the simultaneous solution of A = 0 and aA/akL = 0. Recall that

A is given explicitly by the following,which defines a convenient

quantity H:
2
- w 2 v\2(n-1)
e R~ Al O (172)
b t \'b 2 n!
A=K -H (17p)

Note that we can write M in terms of H as

1 1
= l-m

LS. 3 H \ % __9.‘.*.1
M =wvt (F q+1) <2Fk22n-1 )) wvt X, ( 1) H (18)
L
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Hence setting A equal to zero gives

wz

K =1 -ooey = 1 (19)
r Ww =0y )

For w,k, values satisfying the dispersion equation H can be
replaced in the relation for M by Kr'
The condition that aA/ak,. be zero for the pinch is as follows
- 4
b

(remembering &' = 1 - =, ' =wu-kV,)

¢
]
m
/E
s
H
-
+
r
[e]
n
l<:
[
SN

with H# 0 (i.e. Kr # 0 in simultaneous solution with H = Kr)

v,c2
-k, = 2(n-1) =T

3}

nw
b .
T, (20)

The minus sign reminds us that the phase and wave group velocities
were opposite in the plasma frame, i.e. the wave was a backward wave.
The simultaneous solution of these equations is wo,ko, say. Bxcept in

the argument of the F functions wo can be taken to be o, where

convenient while

2w

ko = - 2(a-1) or T2 (21)
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For a typical Alouette combination of parameters
u o= 10°%, V_,_/vt % 10"% we have ko of order 10™' of nwb/c,the free space
wavelength,

The next step is the expansion of A in the neighbourhood of

wo and ko as described previously (Eq. (1)) i.e.

(k- ko)® 52y
* 2 3k, 2

A
Alw,k) = (w=-wo) g—w‘ :
2 wo’ko

@ o,ko

The k, derivative is as follows:

g;iz _ . :12_( 2(}2:1) . F:‘wvj.> ) H[— 21(:;;1) . (#Z;)’ (%.'1 ) <%'.>z>:|

(We revert to using p = c"'/vt2 for brevity.)

The first term is zero and F!'/F can be expressed in terms of k, from the

dH/0k, = O condition, Eq. (20), so we have with H(wo,ko) = K,

2 _ UV, 2
% =+ 2K (n-1)£—2£_;l.. __.i .I':'l
3k, T ko

Ko 40 ® 2F

The w derivative is simple; neglecting the 3K r/aw term we obtain

| - -
24 SRR A g2 g 2mh)
L

- r kov_L
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Thus we have

Alw,k) = {+2L__.L(n_1) . (x _ko)zl:g 2521'1- ) (IJV >F" }
(22)

The argument of F and of F' is ud', with w' = wo +koV,, so the only k,
variation left is that explicitly in (k, -ko)Z.

Again choosing a few convenient abbreviations

k, - ko = kof; +2(n-1)$"’—k;-vﬂl=f ; (23a,b)
1

g= (n-1)(2n-1) - <"k°v*>z - (n-1{(2n-1) -2(n-1) 57

w
(23¢)
The singular part of the intbgral is using Egs.(16), (22) and (23)
1 >k ik i
@y | 5 = [ * (24)
r (fq-é )2

Now only the singular part of the integral is of interest around t = O
and so the singular part of the integral is as follows, with the value of

M(wo ,ko) expressed using Eq. (18) in terms of H(wo,ko) i.e. of Kr(nwb),

8
1
T R T W A )7 (25)
Gr)© = £
2n Dr b oK, q+1 (£g71 + &®
-6
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1 _1
The integral is elementary and is 2 sinh"[&gﬁf—g] sr 2 cosh™'[ ] for
gf? greater or less than zero. In fact the case of interest is when
f is small, i.e. in the vicinity of wo, so we can use the logarithmic
approximation for sinh™! or cosh™' of large argqment viz:

sinh™ (x) » In x % cosh™ x T (|lux|>>1)

Thus we have for the singular part of the Fourier inversion

. 1
&k _iker i viko? 2P \2. fw-uw
wr [N wem (P () @

Where we have kept only the interesting terms in the logarithm.

This is very close to Nuttall's (1965) Eq. 21. We ncw need
to investigate the inversion of the Laplace transform to obtain the
asymptotic time behaviour.

Laplace Inversion

We cannot expand the logarithm about its singularity directly.
There is a method, more or less equivalent to integration by parts, due
to Nuttell (1964) which will give the result, but a simpler way is to

note the following inverse Laplace transform formula

jc4oo
. A & ity (6-w
Ei(-wot)- 27'[ o ln<——-——-Q-wo> (27)
c-

i

where Ei is the exponential integral and ¢ > 0 is the usual constant in

Laplace inversion.
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For wot>> 1

~iwo t

. . e
Ei(-—wot) > i - o=

(28)

The non-singular im factor can be dropped. Multiplication by w~-terms
analytic at wo merely'means replacing w by wo in those terms since we are
interested only in we effects. All this can also be explicitly shown
by using Nuttall's (1964) method using the full equation for the pulse
form.

If the time behaviour of the current source is given by some
function whose Laplace transform P(w) with dimensions is not singular at

wo, then one simply has P(wo).

Time Behaviour

With all this,then,we have the result that the c¢yclotron
harmonic resonance(electric field at right angles to the magnetic field)
at late times at the moving satellite due to an initial infinitesimal

current dipole at right angles to the magnetic field with perpendicular

dipole moment IL, is

iC+oo
IL, . 3. ike
_ A . -iwt| 1 d ke =
Er(t) =T o f dwiwP(w)e [(2”)3 j szr P—-I
ic-co
IL, mw, v ko? 3, e
bt 2F 1 -0t w W~ Wo
iC-co
IL, mw v ko? = -inw, t
b 't < 2F )2 e b
= — =T 0 P(w, ) —— (29)
141750 c Kr q+1 b mbt
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Putting in the value of ko2 from Eq. (21)

IL, % v, % (o, )? -inw, t
. _iyye/ _2F F\ Yy \™y e 1My
Er(t) ~, hweo (2(n 1)), 2F"q*1> ( '> cgv‘LzKr P(nwb) o, t

(30)
This is the same time behaviour as obtained by Nuttall (1965) for the
perpendicular plasma resonance, as one might expect since the same
logarithmic singularity was obtained.

For the finite length (7) pulse train at frequency Q of the
Alouette

P(nwy) = oy -0) - 7| i, -0)7 (31)

o1(mw -0)7_, l:ei(mb - 9)7_1:]

The results are validforl(t-—r)(nwb-ﬂ)l >> 1.

We do not have values for Fq, F'q, F* or F" but we can

q g+
say that the ratio of F to its derivatives is not too extreme because
of the exponential behaviour for large arguments (see Part 1, Eqs. 38e,
40e). On the other hand F"q+1 is roughly p[F'-—(nwb/b')]/ﬁ greater than
Fq but the exact dependence must wait for an actual calculation. It must
also be borne in mind thaﬁithé term in g may be small if the two factors
in it are nearly equal., This variation with n may be most important.
Failing detailed calculation it is premature to make any statement about
the trends in signal strength for different harmonics. So much for the

extrordinary wave time behaviour.
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V. ORDINARY WAVE

The ordinary wave behaviour is the same in all the essentials.

The
(a)
(b)

()
(a)

chief differences are as follows (see Part 2, Eq. (16)).

Now K, replaced Kr and the wave is polarized along B.

The explicit power of (k_,_vt/wb) is 2n rather than 2(n-1) and

the numerical coefficient is (ni2")-! instead of 2n%(n!2") . Thus
n factors which come from the power of k, are to be converted to
n+ 1,

Now Fm_% is replaced by Fn+% .

Finally, Fq+1" = F"m_s/z = Fn +%," Fn+% + Fn_'_,/z is replaced by
Fa ™ ( 2Fn+% F;l+%+ 7Fn+% 8Fn+’/2+ 3Fn—t‘/z)

The actual dispersion equation (compare Eqs. 8 and 11) is

as follows: 5

(32)

The same steps as used for the extraordinary solution will give

s

1 [ >k o~iker

i nmbvtk"’z(ZF JE W -0
W?ﬂ 5 Zﬂ--—;rx-"—'-——'~> 1n -——9'0 (33)




-19 -

2
V¢
Here ko = - 2n rya

’dlt—_ﬂ

‘Vh , E=n (2n+1) W:l (34=,b)

with F = Fn+5§ and wo very nearly Ty e

Putting in the value of ko gives

o [ £ o 2t O (e )

(35)
The result for E is then
1L, op % F 2 vt’,('nwb.):’ ~drw t
® 2 (=) e _ b
Bn(t)~ gy 4o (@”) (F.> =TI, Plowy) ot (36)

' This result looks virtually the same as for Er(t)'and is
distiqguishable by the appearance of K, instead of Kr and in the F and
~ g functions. Since, as mentioned above in connection with Er(t),
explicit knowledge of the F values is_requirgd for a detailed analysis
we cannot make quantifative statements about the comparative strength

of the signal, either from harmonic to harmonic or between Er and E,.

Comparison Between Perpeﬁdicular ana Parallel Resonance
There are two points of distinction between the perpendicular
and parallel resonances: |
(a) Orientation: The antenna (at least for the infinitesimal dipole) is
oriented in the same direction as the electric field i.e. parallel to

'B for the parallel resonances and perpendicular to B for the
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perpendicular resonance.

(b) Cut-off Frequency Effect: Although the dispersion equation

V approximations are invalid when Kr or K, goes to zero at wp or wp,
nonetheless it is evident that some change will take place there.
BEvidently the éérallel small-k cyclotron harmonic resonance will be
affected near wp and the perpendicular resonance near Wp.

This theory does not indicate that either resonance is any
. stronger than the other.

Applying these criteria to the Alouette it seems that there
are three points in favour of parallel resonance being the one observed
(Lockwood (1965)).

(a) Cyclotrgn épikes are apparently unaffected at N (nger and Calvert
(1964) Figs. 44, ke, alsc Part L).

(b) Cyclotron spikes are apparently strongly affected at Wy (Fejer and
Calvert (1964), Fig. 4e, also Part 4).

It is pqssible that the reason for this may lie in the finite size of

the antenna. Since fdr both waves we need a very small k, it is likely

that having the finite length antenna oriented along the magnetic field

is most favourabie for a small k, and so the antenna is more effective

for excitation when oriented along the magnetic fie}d.

Signal Strength

Although we do not know the exact values of F and related
quantities in the final results we can estimate the field expected and,
using the receiver parameters, the length of time over which the signal
can be detected, The result is in quite reasonable agreement with the

Alouette observations. The method of estimation is similar to that
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employed by Sturrock (1965), except we work in MKS units.

The Receiver Sensitivity is given as 20 db above noise i.e. 102 sbove

KTB, which for the Alouette at 10° °K and 2 x 10* cps bandwidth is a
power sensitivity of 2.76 x 107'° watts. This result is 10* greater than
that of Sturrock (1965)who used the ionosphere temperature (~ 10 °K)
instead of the galactic noise temﬁerature, which at 2 Mc is about 10* °k
Hartz (196L4).

With a matched load of 400 ohms (matching is not likely but the
value is a reasonable rough estimate) the antenna voltage at the terminals
is (2.76 x 107'° x uoo)% or 3s32 x 10°* volts. In the absence of the
antenna the minimum detectab}e field, which is very roughly the minimum

voltage divided by the antenna length (47 meters), gives a field sensitivity

Ein = 3.32x107%/47 = 7x10"° volts/meter

The transmitter dipole moment (IL) is obtained using the output

of 100 watts into 400 ohms to give 0.5 amps current. The dipole moment
is then 23 amp-meters.

The scale factor for the pulse train is 7 i.e.

i(lw=Q)7
_ . € -1,
P(w) =T m—-— T
For the Alouette 7 is 10"* seconds.
Representative values for the satellite velocity are 10* meters/sec
and for the electrons 1.6 x'10° meters/sec (at 2000°K). For an 80° orbit
the satellite velocity component (V,) perpendicular to the field lines is

one fifth or more of the satellite velocity, say 3 x 103 meters/sec.
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The number of cycles for which the signal might be detectable
from the formulas for either resonance field, neglecting the F functions

etc., is

., t (oo, DA
() = % o o Tr Plwy) (37)

Taking 2 Mc as a representative frequency for resonance and

inserting the values given above we obtain
No. of 2Me cycles = 46
Ringing time L€ x (2 x 10°)"' = 2,3 x 10" sec = 243 psec

A ringing time of 2- 6 milliseconds is usual in Alouette records and thus

evidently the estimate gives a value at least a factor of 100 too low.

-

In fact,since the Alouette receiver &oes not turn om until 100 psec
after the transmitter, the signal calculated here would be swamped by
galactic noise long before the Alouette could detect it.

Hence the Alouette cyclotron hermonic resonances must be
explained by the coupling resonances and in some cases perhaps by the
backward electrostatic or "Bernstein" modes.

A very crude estimate of the coupling resonances indicates

they are stronger than those considered here by a rough factor (cvl_/vtz)3
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" ALOUETTE CYCLOTRON HARMONICS
OBSERVATIONS AND RESULTS

T.W. Johnston

- ABSTRACT -

The Alouette results are summarized and discussed.
A non-mathematical exposition is given of the course of mathematical
analysis pursued and the results obtained. The numerical result
obtained for the particular case of small wave number gave a signal
which was one hundred times too small, so concentration of future
work on coupling resonance is urged.

In view of the apparent importance of parallel resonance
the physical basis of this mechanism is explained.

Recommendations fer future work complete the exposition
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1. SUMMARY OF OBSERVATIONS

Enough of the Alouette results have been made public (vy
Lockwood (1963{ 1965), Werren (1963), Calvert and Goe (1963) and Calvert
and Fejer (1964)) that some useful conclusions can be drawn from them.
As well as giving references to the literature it seems worthwhile to
summarize the features of the results and show typical records to give
the reader some feeling for the general results, the data and the form
in which it is available.

Sounding Satellite Operation

The Alouette satellite operation circuitry and construction
has been described in detail by Franklin et al (1963) and by Molozzi
(1963).

The transmitter in the satellite sends out a train of waves
which lasts for 100 usec. at a given frequency. After a 100 pusec.
dead time the signal is picked up through one of two perpendicular dipole
antennas (a 46 m (tip-to-tip) dipole for frequencies less than 4.5 Mc/s,
a 23 m antenna above) by a receiver which is turned on for 14.6 milli-
seconds. Thé cycling time is 15 milliseconds. The frequency of both
transmitter and receiver are steadily increased at a rate of 1 Mc/sec/sec.
Thus in one éycle the frequency changes by about 15 kes and it takes
about 11 seconds for a scan from .5 to 11.5 Mc. Since the satellite
travels at about 10°m/sec it moves sbout 150 meters in a sounding cycle
and 110 km for a frequency sweep.

Part of a typical ibnogram is shown in Fig. 1 with the second

and third harmonic resonances indicated. The actual receiver records

are given in the montage of Fig. 2. Fig. 3 shows a full ionogram.



Many such ionograms have been examined but little work has
been done on the detailed line recards.

Analysis of Results

There are four papers and one available as an abstract which
contain analyses of results. Three also contain some theory as well:
that éspect is discussed in the critique given in the Appendix. Here
the emphasis is on the data analysis.

In the first paper Lockwood (1963) identified the cyclotron
harmonics in the Alouette iéhograms. In a later paper Lockwood (1965)
examined the orientation data from the Alouette magnetometer and come
to the conclusion that, for the high~frequency cyclotron harmonics at
any rate, the resonance depends on antenna orientation and is favoured
when the antenna element is parallel to the magnetic field. The
orientation had been shown to be important by Johnston and Nuttall (196L4)
(their Fig. 2, and related discussion).

Hagg (1963) has compared the magnetic field results with those
deduced from the spherical harmonic coefficients for the field near
| the earth's surface. In general it is usually possible to pick one scan

line which gives a stronger resonance than its neighbours (see Fig. 2),
giving a frequency accuracy of 15 kc, which is .15% at 10 Mc. Hagg comes
to the conclusion that the agreement between the spherical harmonic result
and the value from the assumption that the resonance occurs exactly at
‘ the cyclotron harmonic is as good as the expansion accuracy(1% Unpublished
‘ work (private communication) indicates that within this error limit
the trend of results indicates that the cyclotron harmonic resonance

occurs slightly below the cyclotron harmonic frequency. These are vital




points, since the moving satellite can be expected to see a Doppler-
shifted resonance. The fact that the Doppler shift is small immediately
sets an upper limit on the wave number of the cyclotron wave of interest.
Positive or negative shifts should indicate whether a backward or
forward wave is involved.
In addition to these publications there are two papers on
cyclotron harmonics and electron concentration-dependent plasma
resonances. In the first, written by Calvert and Goe (1963), the
identification of the plasma resonances and cut-offs (zero-range traces)
was adroitly checked by choosing two easily identifiable phenomena to
calculate wp and wy and .check the frequency values of the others. The
correspondence was excellent, thus establishing the proper identification
and correcting an earlier error by Lockwood (1963) which led to a
short-lived éoncept of "displaced" plasma resonances (Warren (1963)).
| Qalvert and Goe plotted the fesults of a series of ionograms .
taken in succession on a satellite pass and demonstrated how it then
became relatively easy to distinguish true plasma effects and instrument
defects. This way of abstracting results also made it véry easy to
follow a given resonance as the ratio of wp/bb charged along the
satellite path and led to the idea of investigating the ionograms for
which interesting frequency conditions held, e.g. wp % nwﬁ. One now
locked at relatéd series of ionograms rather than isolated examples., -
(It was in just this way that Johnston and Nuttall (1‘961+) later detected

the "tuning out" of the cyclotron harmonic due to satellite spin.)
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Following this concept Fejer and Calvert (1964) assembled the
results of many ionograms and plotted the average (over one to three
dozen results) duration in cycles of resonances as a function of wr/%b
for the lowest four cyclotron harmonics. These results are reproduced
in Fig. 4 with the theoretical curves of Fejer and Calvert removed to
let the data stand alone. The values fo? w, = and w, = wp have

R
been inserted where relevant.

Without any preconceived theory, what signifiicant features
can be discerned? The duration of resonance is typically 10° to 10*

n = 4, Fig. 4(4). The fourth cyclotron harmonic is too~higﬁ

to show interesting effects since it is apparently always above Wp -

n =1, Fig. 4(1) - The fundamental is nearly always in the‘range .5 to

1 Mc (see Calvert and Goe) and hence is near the lower limit of the

receiver response. The apparent drop as w, approaches «_ should be viewed
b P

with suspicion unless corrected for receiver response.

n = 2, Fig. 4(2) - The second harmonic duration data shows no strong

features but a tendency to decrease somewhat when 2 Yy is less than wp.

~ Perhaps there is an indication of an increase when W wp, but this,

if genuine, is probably a non-linearity on Wy just as the 2wT resonance
is associated with W non-linearity.

n =73, Fig. 4(3) - The third harmonic shows an interesting marked decrease

in the vicinity of‘3w5 = wp.

TheSe would seem to be the major conclusions to be drawn from
this data, These pbints and those obtained from Lockwood and Hagg
(above)are the general features which should guide the theoretician in

the choice amongst the many possibilities of cyclotron harmonic phenomena.
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Fig. 4. These cyclotron harmonic observational results are from Fejer and Calvert
(1964) Fig. 4. Their theoretical wurves have been removed and relevant
frequency conditions - mw, equals wp, Wp, ], - have been indicated by R,P,L
respectively, In their pbtation fy and fiy are the cyclotron and plasma
frequencies wp/2r and wy/2w. According to Pejer and Calvert the data
points represent the results of averaging one to three dozen observations.

There appears to be a strong wp effect in (1), (3) but not in (2), while
for (4) the "’b/“’p ratio is nevgr small enough for 4w, to approach whe




In order to verify some points from the theory, typical
ionograms for w, % @p and W, = wP were felt to be worth investigation.
The first condition could be met with ionograms already in our
possession, made available to us by Dr. R. Barrington of the Canadian
Defence Research Telecommunigations Establishment near Ottawa. Ionograms
for the second condition were not in our possession and were not available
in time for this report although they should be in our hands in due
course.

The wp ® N0y situation is exemplified in Fig. 5 for n = 3,
n=2, where 1.0 - 1.5 Mc sections of ionograms are shown and indicate
that coincidence of vaand o, has no noticeable effect - a particular
case confirming what can be deduced from the Fejer-Calvert presentation.

Results from Data Analysis

Let us summarize these briefly.

(1) The cyclotron harmonic ringing lasts typically for 10° to 10* cycles
(Fejer-Calvert).

(2) The maximum effect is obtained for a frequency which agrees with
the earth based calculations to 1 %, the accuracy of the calculations
(Hagg). The Doppler shift, if any, ié evidently small.

(3) The only pronounced effect from the duration vs wp/bb data is a deep
minimum for the 3wb resonance when jwb = wp (Fe jer-Calvert Fig. 4,
our Fig. 4(3)). There appears to be no effect at wp in any of the
possible cases (n =2, n = 3).

(4) The favoured orientation for cyclotron harmonic resonance is when

the antenna is oriented along the magnetic field (Lockwood (1965)).
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Pig. 5. Ionograms extracts Ebetnen 1 and 1.5 Mc) showing the lack of effect of

near to wp for (a) 3w (b) 2 #,. The ionogram references for (a) and
(b) are from left to right:

(a) October 7, 1962, Quito (Station 7) Day 280 U.T. 13 hours and 50:04,
50:41, 51:55, 52:32 (alternate ionograms)(46:58 was used by Johnston
and Nuttall (1964)).

(b) October 2, 1962, Ottawa (Station 3) Day 275 U.T. 14 hours and 26:08,
26:26, 26:45, 27:03, 27:22, 27:59.

Ionograms courtesy Canadian Defence Research and Telecommunications
Establishment, Ottawa.




IT. THEORY WITHOUT MATHEMATICS

The mathematical analysis presented in parts 1,2 and 3 is
forbidding in appearance and is not likely to be-assimilgted in one
or two readings. It seems useful, therefore, to give aniﬁutline of the
philosophy and ideas involved and the results obtained without going
through the mathematical manipulsations, without even giving the
equations, only the formulas for the results.

The basic problem was to explain the Alouette results.

Basid Concept

At the time this work began we were closely connected with
Nuttall's work on the parallel plasma frequency resonance (wp) and the
perpendicular transverse frequency resonance (wT)(wA in Nuttall's
notation) since published Nuttall (1965).

The basic concept (borrowed from fundamental particle
dispersion theory) was that singular behaviour would result from the
coalescing of two dispersion equation solutions in such a manner that
a certain integral line was "pinched" between the associated poles
(see Nuttall (1965) and references after Part 3).

This degeneracy condition can usually be linked to the concept
of a wave whose group velocity in some appropriate frame of reference
is zero.

In the Alouette case the logical frame of reference is that
of the satellite. The concept is one of a plasma wave packet which
is set up by the sounder pulse and which then travels with the satellite
(group velocity = satellite velocity). This wave packet then slowly

decays because of higher-order dispersion effects. When the wave



packet or (group) velocity is not equal to the satellite velocity the
packet would move quickly away from the satellite and become
undetectable..

The concept of zero group velocity (usually the satellite
motion is ignored) has beén employed by all the serious analysts of the
problem. This group-velocity criterion gives the observed resonance

frequencies except for 2wT (a non-linear effect) and wp and Wy which

are singular but give no resonance in most cases.
The next point is the close agreement between the cyclotron
harmonic resonances and the exact multiples of the gyro frequency.

This satellite velocity is considerably smaller (41/16) than the electron
| thermal velocity but nonetheless the observations indicate that the
perpendiculaf and'paraliel wave numbers must be less than 6 m ' and 2 m™*
respectively, the wavelengths being‘greater than ,16mand .5m. Thus
our attention is focussed on small but non-zero wave numbers. The wave
numbers cannot in any case be exactly zero because of satellite motion.

We are thus led to examine solutions for the plasma dispersion
equation which are very near nwy s which give group velocities equal to
the satellite velocity and have small wave numbers compared with the
thermal wave numbers (nwb/ﬁt). To obtain the dispersion eqﬁation the
plasma dielectric coefficient must be known.

Dielectric Coefficient (Part 1)

The plasme dielectric coefficient to use is evidently
the one derived from the Vlasov equation as indicated in the introduction
since collisions are known to be utterly negligible in the cases of

interest. At first (progress reports July - October, 196L) the




nonrelativistic equations were used and satellite motion was ignored.
Later (progress reports November, December 1964) it was realized that

and that

the nonrelativistic equation was invalid very close to Wy

relativistic analysis must be used.

Part 1 of this.repoft was therefore devoted to the exposition
of both the relativistic and nonrelativistic dielectric coefficients.

When not very near the qyclotron.harmonics the differences
are completely negligible for a plasma which has kinetic energy for
less than the rest energy (kT<< me? kT/me? ~ 2.5x10°7 for the Aloustte).

The relativistic»cyclotroﬁ.harmonic terms for small k,
contribute poles in nonrelativistic theory and branch points with large
discontinuities at the average relativistic cyclotron harmonic, which
is very slightly (50 kT/hqé %) below the rest-mass cyclotron harmonic
frequency. The difference may appear to be small but gives dispersion
equation results which differ in two important features from those of
nonrelativistic dispersion theory.

Dispersion Equations (Part 2)

As inaicated in the Introduction this report, the dispersion
equation and other parts of the Laplace-transformed Green's function
need to be calculated to obtain the electric field. Since the
relativistic and nonrelativistic dielectric coefficients differ only
very near the pyclotron harmonics it is only there that dispersion
equations differ. The dispersion equation results have been obtained
and discussed in Part 2. The relativistic and nonrelativistic results

differ qualitatively in two important respects:



(1) A nonrelativistic feature which gave one wave very close to the
cyclotron harmonic frequency proves to be spurious and vanishes

in the relativistic analysis. A typical change ie shown in Fig. 6.

!

Non~relativistic Relativistic

A-H coupling

spurious

A-H

A-H

K —— k —p

Fig. 6 - Disappearance of spurious wave (s).

(2) The relativistic dispersion solution for the cyclotron harmonic
very near zero wave number increases in frequency while the

nonrelativistic solution goes right to zero wave number (see Fig. 7)
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Non-relativistic : Relativistic

4 1

small-k pinch

Fig. 7 - Change in behaviour for small wave numbers.

The first feature éliminates a spurious wave from
consideration (the wave had already given peculiar results in the
nonrelativistic analysis).

The second feature is interesting since it now becomes possible
to match perpendicular group and satellite velocity for small wave

number.

Selection of_DiSpersion Regions

As indicated earlier the small Doppler shift indicatgs a
modest value of wave number, We wish to match the group and satellite
velocities, One possiﬁility is that indicated in Fig. 7. Another
possibility is the region wheré the cyclotron harmonic solution

couples to the Appleton-Hartree solution, as sketched in Fig. 8.
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coupling
pinches

k —»

Fig. 8 - Appleton-Hartree and cyclotron harmonic
coupling pinches.

There are two possibilities for each Appleton-Hartree solution, four
~in all. These would disappear with increasing wp/wb as mw, becomes
less than the relevant cut-off ffequency, wpy OF W . (Note that wp
applies instead of w

if nw, is less than w, and greater than wL.)

R T
The collected results of Fejer and Calvert (1964) show no
such frequency cut-off, only a dip in the 2wy case at W, Hence it
seemed that these cyclotron harmonic resénance and Appleton-Hartree
wave coupling possibilities did not fit the observations and so they
were not pursued further. Last-minute corrections on the numerical
work showed that the small-k signal was undetectable and so, in spite

of appearances, the couocled resonances must be considered as prime

targets for analysis.
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Time Behaviour and Numerigal Result

Héving decided to concentrate on the dispersion equation
behaviour near zero wave number the calculation in Fart 3 was essentially
only mathematical technique. It involved the mathematical concept of
k-poles pinching the integration 1ing‘and expansion around fhe singular
region. |

The final result from Part 3 (Eq. 30 and Eq. 36) proves to be
very much the same,at least superficiallysfbr both the resonances both
extraordinary (electron resonant circularly polarized) and ordinary
(polarized parallel to the magnetic field).

Af'ter the correct galactic noise temperature was inserted at
the eleventh hour, the field proved to be too small by a factor of 100
to fit the observations.

The mathematical technique must therefore be applied to the
other pinch points in future work.

There is a possibility that the parallel resonance might be
more effective when one considers the wave number required. This
demands a very much lower value of parallel than perpendicular wave

number, i.,e, the most gentle variation along the magnetic field.
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Examination of the infinitesimal dipole field shows that the most
gradual variation occurs when one moves parallel to the dipole line,
Hence one might expect the dipole parallel to the magnetic field to give
the most excitation. Apparently this does not seem to emerge naturally
from the analysis but appearances may be deceptive. Finite antenna
size may be important here.

COMPARISON OF THEORY WITH EXPERIMENT

The observations seem to point in three different ways, two
positive and one negativey to the ordinary or parallel cyclotron resonance
rather than to the other., These points are as follows:

(1) According to Lockwood (1965) the favoured antenna orientation is
that with the element along the magnetic field., This fits the
orientation of the infinitesimal dipole model for ordinary resonance
and is opposite to the orientation for extraordinary resonance.

(2) As shown in Fig. 4(3) the Fejer-Calvert data show an w, dip
consistant with a X, effect in the ordinary resonance formula.
Jonograms should soon be forthcoming to check this point further.

(3) As shown in Fig. 4(2),(3),(5) there appears to be no w, effect

R
at least for the second and third harmonics. This is confirmed and
exemplified by the ionogram extracts of Fig. 5..

Parallel or Ordinary Cyclotron Harmonic Resonance

In view of our conclusions on the importance of parallel
resonance, some remarks on the basic concept are in order.(The basic
picture for perpendicular effect has already been described by Lockwood
(1963) and Johnston and Nuttall (1964). The parallel effect basic concept

has not been discussed, but it is equally easy to visualize.
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Figure 9. Parallel cyclotron harmonic excitation
effect on electron ring systems orbiting
around a common central magnetic field line.

We consider a ring of electrons of the same velocity
magnitude circulating aroupQ,a common magnetic field line and drifting
along it. If the electric field parallél to the magnetic field varies
in a direction across the magnetic field, the electrons in the ring
will be given different rf velocities at different positions around the
ring. If the radio frequency is a cyclotron harmonic, the effect of
the non-uniformity will not average out in time and will be cumulative.
The effect will be that our ring will begin to stretch along the magnetic
field lines due to the acceleration. The effect will alternate around
the ring, the number of cycles being equal to the frequency harmonic
number (w/'wb = n). If the excitation is non-uniform (i.e. 3°E/0%® is
not zero) then there will be a net current at mw, .

Before the analysis was well under way some qualitative

reasoning had been carried out (given in the June progress report) on
the question of perpendicular and parallel resonance. This is reproduced

below as it is not without interest.
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If we consider the case observed to be favourable to cyclotron
harmonic ringing of parallel orientation (antenna parallel to the
magnetic field), the excitation decays by flow of electrons along the
magnetic field lines. The electrons travel at an average velocity of
2 x 10° meters/sec and so can travel the antenna length (~ 10 or 20
meters) in times of the order of 50 usec or 100 ysec. Hence the
excitation of both antenna elements should be well mixed by the time
receiver observations are begun, one hundred microseconds after the
exciting pulse ends, Hence we are forced to the conclusion that the
in-phase or symmetric Ez excitatién parallel to the magnetic field is
much more likély to persist and the antiphase, antisymmetric Er effects
perpendicular to the magnetic field are likely to be rapidly mixed and
cancelled. Only if Er effects are initially far stronger than EZ are
they likely to be observed in the late decay.

When the antenna is across the magnetic field then the even
excitation comes from the Ez field, which is now perpendicular to the
magnetic field, and from the component of Er which is also perpendicular
to the magnetic field, so that the exqitation would be pfedominantly
perpendicular. Since cyclotron harmonic effects are not observed when
the antenna is across the magnetic field it seems that perpendicular
excitation is not effective.

Let ué look at the effectiveness of the excited decaying
current and charge in inducing a signal on the antenna,

Parallel excitation gives a cylindrical current system with
axis more or less along the antenna and current parallel to thé‘cylinder

axis, This is very effective in inducing current in the antenna.
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By contrast, the radial current from the charge excitation
due to the perpendicular electric field only induces antenna effects
to the extent it is non-uniform,

Thus,from the consideration of antenna field parity, electron
flow along magnetic field lines and the Alouette antenné orientation
efféct on cyciotron harmonic signals, we aré led to the following
conclusion. The dominant cyclotron harmonic mechanism dvue to non-uniform
antenna field is due to the electric field component along the ﬁagnetic
field lines, For the favourable parallel and near-parallel orientation
this can be thought of as the induction electric field (Ez) of the
antenna current rather than the electrostatic field of the antenna charge.

From this reasoning we feel that if it becomes necessary for
reasons of time, computer cost, etc., to concentrate on oné aspect;
then the parallel excitétion is the mechanism on which to concentrate."

IV. SUMMARY

The £heory as developed in this report and the available observ-
ations ppint slightly but definitely to the excitation of an ordinary
wave qyélotron harmonic where it couples to the ordinary Appleton
Hértree wave as the basic cyclotron harmonic phenomenon iﬁ the Alouette
records.

It is not theoretically well established that this mechanism
is dominant. More work should be done to clear this point up, of the

kind that showed the small-k pinch could be ignored.
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V. FUTURE WORK
The problem and the results are not yet in as clear and as
definite form as is desirable. Much analysis has been accomplished
yet more should be done to clear up the situation further and give more
definite results. Additional data analysis and theory are regquired.
The main lines which suggest themselves are as follows:

Observations

More Alouette and S-48 data should be analyzed: the S-48
for modﬁlation and orientation effects (but unfortunately cyclotron
harmonic effects only occur if the fixed frequency coincides with a
cyclotron harmonic) and the Alouette for the effects of variation of
frequency and electron density, not to mention comparison between
resonances of different hafmonic number. Points to check are: details

of critical frequency behaviour % wp, wR, W the form of the
time variation including AGC; orientation; and form of roll and any
other modulation.

Theory

The coupled pinches of Fig. 8 should be investigated
immediately and intensively to obtain E(t) for them. The mechanism
for thé behaviour of the three lowest harmonics for high densities

should be studied carefully particularly when they are comparable with

Wys @ys Wy OT Gp.




- 18 -

REFERENCES

Calvert, W., G.B. Goe (1963) - J. Geophys. Res. 68 6113 (1963).

Fejer, J.A., W. Calvert (1964) - J. Geophys. Res. 64 509 (1964).

Franklin, C.A., R.J. Bibby, R.F. Sturrock, D.F. Page (1963) - Inst.
Elect. Electron. Engrs. Convention Record 1963.

Hagg, E.L. (1963) - Congress of Can. Assoc. of Physicists, (June 1963)
Paper 5.12, abstracted in Physics in Canada 19, No. 3

(Addenda).
Johnston, T.W., J. Nuttall (1964) - J. Geophys. Res. 69, 2305 (196L4).
Lockwood, G.E.K. (1963) - Can. J. Phys. 41 190 (1963), (1965) Can. J.
Phys. 43, 291 (1965). |
Molozzi, A.R. - COSPAR Symp. Warsaw (June 4, 1963).

Warren, E.S. (1963) - Nature 197 636 (1963).



APPENDIX

CRITIQUE OF THE THEORETICAL WORK
: ON
TOPSIDE SOUNDER RESONANCES

Theories of resonances can be called either identification
theories when the observed resonant frequencies are correlated with
characteristic calculated frequencies or behaviour theories if
an attempt is made to calculate such features as damping, frequency
widths and other effects, "Identification" is far easier than
"behaviourl!

Identification

In the case of the Alouette resonances, one set were
easily identified immediately as cyclotron harmbnics by Lockwood (1963).
Lockwood attempted to identify other plasma resonances but chose
incorrectly and it was left to Calvert and Goe (1963) to identify the
other plasma resonances as the plasma frequency (wP ~ X =1) the
transverse plasma resonance O (upper hybrid or Pythazoras frequency
\fm , ~X =1-Y%) and often its second harmonic (20g)
Johnston (1964)and independently Wallis (1965) also noted
that, from the Cglvert and Goe results, the 2wT resonance could only
appear for wp < 2w, . This was confirmed by Calvert (1964) after
further study of a large number of cases.
Behaviour

The various frequencies associated with the Alouette

resonances appear as characteristic frequencies for the Vlasov plasma




dispersion equation and its two main simplifications viz. simple cold
plétsma electromagnetic (Appleton-Hartree) theory and warm (Vlasov)
plasma simple electrostatic theory.

Cold Plasma Appleton-Hartree Theory

ke
In cold plasmas =% g—:—:— goes to zero and k- e (where the

equations are not valid) for frequencies Wg 4 which satisfy the following

equation,
1
_ 4 2 4 2, 2 29)Z
wei.-g[wT i(wT l.wpwb cos?6)?]

However, as Sturrock (1961) pointed out in connection with radio
bursts from the sun, aw/al'g itself only goes to zero for 6 = 0 and 7/2
i.e. w = wp and w = Wi The behaviour at w_ is degenerate for all k,
(ky = 0, w and (wp/c)(wb/(wp+ wb))% in particular) and can only be
disentangled with a warm plasma to remove the degeneracy.

' Cyclotron harmonics do not appear.

Vlasov Plasme Electrostatic Theory

Using the Vlasov equation with the velocity of light set
equal to infinity (i.e k>>w/c) one obtains the Vlasov electrostatic
dispersion equation which gives Wy a8 Ikl » 0 (where the electrostatic
approximation is generally invalid) for fixed 6. The cyclotron harmonic
harmonic frequencies are the k, = 0, k; » 0, k, » = lixgxits of

perpendicular cyclotron modes.




Vlasov Plasma Electromagnetic Theory

In this, the most general collisionless uniform plasma theory,
wp behaviour is no longer degenerate because electron random motion is
now considered. Satellite motion may well be important. The W
resonance is associated with a real (aw/ég;= 0, for real 5,w) pinch for
Wy < 2wb and with a complex pinch for W >’2gb, for zero k, finite k,
of order wT/V;;E . The cyclotron harmonic behaviour is in evidence for
k, =0, k; » o and for finite k, where an Appleton-Hartree solution
would exist.

Neither cold plasma electromagnetic theory nor Vlasov plasma
electrostatic theory is valid at the wp resonance since the resonance
occurs outside the limits of their validity (k << w/%t, k>> w/c
respectively% One must in general use the full Vlasov plasma theory
with the electromagnetic theory to get useful results.

Very near 2N and particularly as k - O the relativistic
Vlasov equation must be used.

To date, besides the connected work of Nuttall, Johnston and
Shkarof'sky there are three other papers or reports which attempt to
come to grips with the behaviour of the Alouette resonances.

Two of these have been published. These are the work of
Fejer and Calvert (1964) and of Sturrock (1965). Both are alike in
that they begin with the electrostatic nonrelativistic Vlasov plasma
dispersion equation.

The third report has Jjust come to hand., It is the work of

Dougherty and Monaghan (196L) of Cambridge. The spirit of this last




work is the same as that of Nuttall, Shkarofsky and Johnston and they
agree as far as they have gone. They reach the same conclusions as we
do as to the form of the nonrelativistic dispersion equation and discuss
likely pinches but have gone no further. We have no criticism of the
work as it stands except to say that we agree‘with it as far as it

goes but that it is a beginning only and that relativity is important
very near nuw, .

Let us return to the Vlasov electrostatic analyses of Sturrock
and of Fejer and Calvert. The focﬁs of these is on k » 0, i.e. on what
might be called.electrostatic cut-offs.

The first and most serious criticism is directed at the use
of the electrostatic approximation (§ = - V¢) near cut-offs.

In the eléctrostatic approximation the field is linearly
polarized along k, and only the highest terms in k are kept in the

dispersion equation, which becomes

il

—ve

where n = gp/b is the refractive index vector and §7is the relative
dielectric tensor. This is a near-resonance condition (n -‘e).
The near-cut-off condition is an expansion in n around the

cut-off condition.

In general (in contrast with the longitudinal polarizational parallel

to k in resonance) there are parallel cut-offs when the electric field




is linearly polarized along the magnetic field and there are perpendicular

cut-offs when the electric field is circularly polarized in a plane

perpendicular to the magne tic field.

In general the behaviour of the electrostatic solutions

near n = 0 differs markedly from the nonrelativistic electromagnetic
near-cut-off solutio;s (see Figs. 1 - 3 of Dnestrovskii and Kostomarov
(1963)). Hence the electrostatic equations cannot be expected to produce
correct results for small n, For sufficiently large n the electrostﬁtic
solution is adequate and has been successfully used by Crawford, Kinc and Weiss
(1964) in calculating the displaced cyclotron harmonic frequency.

Nuttall,(196%, uin his work, took particular pains to treet w

y and

O phenomena properly. We are pursuing the same course for the cyclotron

harmonics.

The common serious criticism of these two analyses is that they

rest on the electrostatic dispersion equation applied where it is invalid

and gives incorrect results.

Apart from this fundamental objection (which might be removed
if the correct dispersion equation were employed) there are other
objections as well, but they are different for the two treatments.
Sturrock

The Wps ©p electromagnetic effects are properly based on the
cold electromagnetic equations and seem adequate although limited to an
infinite~impedance infinitesimal dipole. (On the other hand Dougherty
and Monaghan (1964) come to the conclusion that, although there is a
dispersion singularity, the associated field is not singular so the spike

is unlikely to be observed.)



The other results are incorrectly based on the electrostatic

formulation.

Apart from the dispersion equation used there are still points

to question in the procedure.

The plasma (wp) and transverse (wT) resonance frequencies do
not emerge correctly, since the value for w as n » O for a given 6 is

1
. . _ 2 2\2 . S e
wp, Which is between o, = (wp + o ) and the higher of wy OF Wy, viz:

. 1 1
2 4 ’2‘_‘2—
W, = [?2- ( 22- -w 2w 2cos; _J
0+ 2 4 P b

This is the function that should enter the 8 integration.
The results obtained may be justified as approximations but this
requires some demonstration or discussion since the change in Wy . with
6 is not small., The wT result is for a non-zero k as shown by Nuttall.
Nuttall's (1965) W, result for k = O gives a Green's function of

. : 3/
- i(w?- o, #)%/1/3 v, c® or an asymptotic time dependence elwpt/vtcz(wpt) 2

as compared with Sturrock's (1965) eint/vt3(wpt)5/z. For, say 10°  cycles
This is a difference of 10® from Sturrock's result. In the Alouette case
the pinch occurs for 8w/a§ =‘x;so the k = o region is probably not in-
volved. A pair of electrostatic - Appleton-Hartree coupling pinches with

1
kK, ® wp/b (wb/(wl';l’;wb))2 are the probable points of interest.

The cyclotron harmonic results using the incorrect (i.e.
electrostatic) equation near k -0 give serious divergences unlike the

the electromagnetic solution.




Using the Green's function for wp at least the asyuptotic
excitation is locally uniform, which seems to rule out Sturrock's
conjecture that satellite motion might be a major course of signal
reduction.,

In view of the foregoing little reliance can be placed on
the conclusions. Nonetheless the overall method of attack is well
founded. The asymptotic time behaviour is deduced from certain integrals
(A.7 to A.13) which, strictly speaking, do not converge.. The results
can be justified for asymptotic behaviour but this should be done
explicitly to avoid misleading readers.

Fe jer-Calvert

The same objection to their quasi~static analysis applies as
mentioned in connection with Sturrock's work. Instead of the more-or~less
direct Fourier Laplace transform approach, Fejer and Calvert attempt to
employ the concept of group velocity. The concept of a group velocity
is only well defined when the characteristic spread in wéve number Ak
is much less than the wave numberk. Then one can say that the sige of
the wave pééket is of the order of 2n/(Ak). When the group velocity
tends to zero, as it does for ctases of interest, the spreading becomes
more a phenomenon of phase mixing or destructive interference rather
than of group velocity. When the group velocity goes to zero,one is
warned to re-examine the situation (see Brillouin, particularly Chapter
5s Sec. 4). It might be quite useful to discuss the dispersion of a

wave packet, but this would be irrelevant to this critique. (See Part 3.)



So long as the group velocity is not nearly zero then the
Fe jer-Calvert argument of their Page 5055 applies and the time of

passage of the wave packet measured in Ak direction in w periods is

w ég.gg
ok
&
ok
But for ég we should use Ak = Aw 30

so we obtain Tw = f% as one expects.

When this formula is invalid (i.e. when dw/3k goes to zero)
then so is the use of group velocity. One must use higher derivative,
but the general £ P amplitude behaviour, obtained by Sturrock, Nuttall
and ourselves, means that a natural time scale is not likely to be
f'ound.

Apart from the objections given above, the T and Gm
expressions given in their Appendix diverge for k » O and there seems
no way of setting a lower limit on k nor do they suggest one. Unless
the ad hoc -ssumption,that Bm is the same finite constant for each
resonance, can be Jjustified, the comparisons between harmonics or between
measurements in different conditions is meaningless.

Let us also discuss the useful experimental data presented

by Fejer and Calvert.




Their Figs. La and Lb suggest that the wpwH

cannot be unambiguously ascertained with the present Alouette's low-

characteristics

frequency limitation,

The Y observations in Fig. 4c show a striking change when
Wy 2 2uy (i.e. o, 3 f;wH). (See Nuttall (1965a), also private
communication to Calvert by Johnston.) The quasi-static theory should
also show this (F-J Eq. 26) but apparently not as treated by Fejer
and Calvert.

The 2w, 3wy data do not (except perhaps slightly for ZwH)

show any violent effect at mw = Vn? - wa) but nor do they

i = op (o
at nwy = wi(wN = JETTTj‘wH) as predicted by the equivalent zero-k
stationary frame nonrelativistic electromagnetic theory. There is an
apparent effect in the ij data when 3wH = wp.

Apart from the useful data and the general heuristic value
of the dispersion equation contours of their Fig. 3, the Fejer-Calvert
approach cannot be said to be satisfactory.

CONCLUSION

t For these reasons given above the electrostatic analyses
discussed here cannot be considered successful or adequate and the
problem still ewaits a proper treatment.

The Sturrock paper has the better theory (although a little
shaky) but is incorréctly based on electrostatic dispersion. It would
be vaétly improved‘using the c&frect dispersion equation. The Fe jer-
Calvert theory is quite inadequate but thé review and observation data

is quite useful.
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The Dougherty-Monaghan approach is essentially the same
as ours, but they have gone no further than a preliminary investigation

of theony and give no results for time behaviour.

Wallis (1965) has really done no more than comment on
the Calvert-Goe data and draw atténtion to the work of Dnestrovskii and

Kostomarove
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